EMBEDDED SQL STATEMENTS IN COBOL

SQL Declarations

· Host variables

· Exception handling

· Cursor Operations
SQL Statements

· Select

· Insert

· Update

· Delete

VARIABLES

EXEC SQL BEGIN DECLARE SECTION END-EXEC

...

…

…

EXEC SQL END DECLARE SECTION END-EXEC

EXAMPLE FOR A COBOL PROGRAM

WORKING-STORAGE SECTION

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01
WS-SUBAREA

PIC X(12).

01
WS-CALLNO

COMP S9(4).

01
WS-TITLE

PIC X(30).

01
WS-SQLCODE

COMP S9(4).

EXEC SQL END DECLARE SECTION END-EXEC.

SQLCODE

EXEC SQL

INCLUDE SQLCA

END-EXEC.

SQLCODE Values

0

request was successful

100
request failed (no more rows for a FETCH, no data was returned by SELECT statement, a DELETE operation was unsuccessful)

< 0
a database error was encountered (the database remains unaltered)

NULL values

COBOL:

EXEC SQL SELECT fine

INTO :WS-FINE:WS-FINEIND

FROM.LOAN WHERE user_id = 100

AND call_no = 100

END-EXEC.

*CHECK FOR A NULL VALUE

IF WS-FINEIND = -1 THEN

DISPLAY "Blank Field"

ELSE

Move WS-FINE TO ...

EXCEPTION HANDLING

EXEC SQL WHENEVER NOT FOUND CONTINUE.

EXEC SQL WHENEVER ERROR GOTO ERROR-ROUTINE.

OPERATIONS WITHOUT CURSORS

EXAMPLE:

EXEC SQL

SELECT subject, title

INTO :WS-SUBAREA:WS-SINDIC, :WS-TITLE

FROM BOOK WHERE call_no = 100

END-EXEC
A COBOL PROGRAM TO RETRIEVE BOOK 100

IDENTIFICATION DIVISION.

PROGRAM-ID. EX 1.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING‑STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END‑EXEC.

01
WS-SUBAREA
PIC X(12).

01
WS-SINDIC

PIC S9999 COMP‑5.

01
WS-TITLE

PIC X(30).

EXEC SQL END DECLARE SECTION END‑EXEC.

EXEC SQL INCLUDE SQLCA END‑EXEC.

PROCEDURE DIVISION.

EXEC SQL

WHENEVER SQLERROR COTO Z200‑ERROR

END‑EXEC.

MOVE SPACES TO WS-TITLE, WS-SUBAREA.

EXEC SQL

SELECT title, subject

INTO :WS-TITLE, :WS-SUBAREA:WS-SINDIC

FROM BOOK

WHERE call‑no = 100

END‑EXEC.

IF SQLCODE = 0

IF WS-SINDIC = ‑1

DISPLAY WS-TITLE, "**NULL**​

ELSE DISPLAY WS-TITLE, WS-SUBAREA

ELSE DISPLAY "BOOK WITH CALL NO 100 NOT FOUND"

DISPLAY ‘SQLCODE = ‘, SQLCODE.

STOP RUN.

Z200-ERROR.

DISPLAY "ERROR DISPLAYING CALL-NO = 100”.

DISPLAY SQLCODE.

STOP RUN.

UPDATE and DELETE

EXEC SQL DELETE

 FROM BOOK

 WHERE subject = 'Computing'

END-EXEC

EXEC SQL UPDATE BOOK

SET title = 'Modula 2'

WHERE call_no = 300

END-EXEC
Programming with Cursors

EXEC SQL DECIARE cursor‑name CURSOR

FOR select‑expression.
For example,

:

EXEC SQL DECLARE c CURSOR

FOR SELECT title

FROM BOOK

WHERE subject = :WS-SUBAREA

ORDER BY title

END-EXEC.

EXEC SQL DECLARE q CURSOR

FOR SELECT user_id, fine

FROM LOAN

WHERE paid ='no'

FOR UPDATE OF fine

Embedded SQL contains OPEN, FETCH, and CLOSE state​ments to manage cursors.

OPEN

the rows associated with a cursor are made available

FETCH
 the next row of a response set is accessed, and

 fields from that row are placed into host variables

CLOSE
 the cursor is made unavailable (but it can be

 reopened again)

Example

Suppose we must retrieve all books in a subject area, but the subject area is not known until the program is running. We use the following cursor.

EXEC SQL DECLARE c CURSOR FOR

SELECT call_no, title

FROM BOOK

WHERE subject = :WS-SUBAREA

A COBOL program to retrieve the books.

IDENTIFICATION DIVISION.

PROGRAM‑ID. EX2.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING‑STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END‑EXEC.

01 WS-SUBAREA PIC X(12) VALUE SPACES.

01 WS-CALLNO PIC S9999 COMP‑5.

01 WS-TITLE PIC X(30).

EXEC SQL END DECLARE SECTION END‑EXEC.

EXEC SQL INCLUDE SQLCA END‑EXEC.

PROCEDURE DIVISION.

PERFORM B200‑CODE.

STOP RUN.

B200‑CODE.

*EXCEPTION HANDLING

EXEC SQL WHENEVER NOT FOUND CONTINUE END‑EXEC.

EXEC SQL WHENEVER SQLERROR GOTO ERROR‑RTN

 END‑EXEC.

*OBTAIN SUBJECT FROM USER

 DISPLAY ‘ENTER SUBJECT:’

 ACCEPT WS-SUBAREA.

*THE CURSOR FOR THE MULTI‑ROW SELECT

 EXEC SQL DECLARE c CURSOR FOR

 SELECT call‑no, title

 FROM book WHERE subject = :WS-SUBAREA

 END‑EXEC.

*RETRIEVE THE ROWS

 PERFORM OPEN‑CURSOR.

 PERFORM GET‑ROWS UNTIL SQLCODE NOT EQUAL 0.

 EXEC SQL CLOSE C END‑EXEC.

OPEN‑CURSOR.

EXEC SQL OPEN C END‑EXEC.

EXEC SQL

FETCH C INTO :WS-CALLNO, :WS-TITLE

END‑EXEC.

GET‑ROWS.

 DISPLAY WS-CALLNO, WS-TITLE.

 EXEC SQL

 FETCH c INTO :WS-CALLNO, :WS-TITLE END‑EXEC.

ERROR‑RTN.

 DISPLAY "ERROR, SQLCODE=", SQLCODE.

 EXEC SQL CLOSE C END‑EXEC.

 STOP RUN.

Updating/Deleting the current record

EXEC SQL UPDATE TABLE

SET fieldl = expression....

WHERE CURRENT OF cursor name END-EXEC.

EXEC SQL DELETE TABLE

WHERE CURRENT OF cursor‑name END-EXEC.

Example 3 Suppose the library requires an application that accesses loan rows and which does the following:

a) removes any unpaid fines (deletes the row) for seniors

b) increases any other unpaid fines by 10%.

Cursor:
 SELECT call_no, user_id, fine

 FROM LOAN

 WHERE fine <> 0 AND paid = ‘NO’

Basic Logic:

For each loan record retrieved, obtain the age for the person;

If the person’s age is >= 65, delete the loan row, otherwise

Increase the fine by 10%.

IDENTIFICATION DIVISION.

PROGRAM‑ID. EX83.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING‑STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END‑EXEC.

01 WS-CALLNO
PIC S9999 COMP‑5.

01 WS0-PATID
PIC S9999 COMP‑5.

01 WS-FINE
PIC S99999V99 COMP‑3.

01
 WS-AGE
PIC S9999 COMP‑5.

EXEC SQL END DECLARE SECTION END‑EXEC.

EXEC SQL INCLUDE SQLCA END‑EXEC.

PROCEDURE DIVISION.

PERFORM B200‑CODE.

EXEC SQL COMMIT WORK END‑EXEC.

STOP RUN.

B200‑CODE.

*EXCEPTION HANDLING

 EXEC SQL

 WHENEVER NOT FOUND CONTINUE END‑EXEC.

 EXEC SQL

 WHENEVER SQLERROR GOTO ERROR‑RTN

 END‑EXEC.

* THE CURSOR FOR THE MULTI‑ROW SELECT

EXEC SQL DECLARE c CURSOR FOR

SELECT call_no, user_id, fine

FROM LOAN WHERE fine < > 0 AND paid = 'NO'

FOR UPDATE OF fine END‑EXEC.

*GET AND UPDATE THE ROWS

PERFORM OPEN‑CURSOR.

PERFORM GET‑ROWS UNTIL SQLCODE NOT EQUAL 0.

EXEC SQL CLOSE C END‑EXEC.

OPEN‑CURSOR.

EXEC SQL OPEN C END‑EXEC.

IF SQLCODE = 0 THEN

 EXEC SQL

 FETCH C INTO:WS-CALLNO, WS-PATID, :WS-FINE

END‑EXEC.

GET‑ROWS.

EXEC SQL

SELECT age INTO :WS-AGE

FROM PATRON

WHERE user_id = :WS-TATID

END‑EXEC.

 IF WS-AGE IS NOT LESS THAN 65 THEN

 EXEC SQL DELETE FROM LOAN

 WHERE CURRENT OF C

 END‑EXEC.

DISPLAY ‘LOAN RECORD DELETED FOR:’, WS-PATID

 ELSE

 EXEC SQL UPDATE LOAN

 SET FINE = FINE*1.1

WHERE CURRENT OF C END‑EXEC

DISPLAY ‘LOAN RECORD UPDATED FOR’,

 WS-PATID.

 EXEC SQL,

 FETCH C INTO :WS-CALLNO, :WS-PATID, :WS-FINE

 END‑EXEC.

ERROR‑RTN.

DISPLAY ‘ERROR OCCURRED’, SQLCODE.

EXEC SQL CLOSE C END‑EXEC.

STOP-RUN.

