Sample Problems from previous Andalafte Competitions

Problem 1. Evaluate $\int_0^\infty \frac{\ln x}{1+x^2} dx$ (let u = 1/x)

Problem 2. Evaluate $\int_{-1}^{1} \sqrt{(1+x)/(1-x)} dx$ **Problem 3. The Fibonacci sequence** (f_n) is defined by $f_1 = 1, f_2 = 1$ and for $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} f_n x^n$

Problem 4. Evaluate $\int_{0}^{1} \sqrt[5]{1-x^{3}} + \sqrt[3]{x^{5}-1} dx$ **Problem 5. Evaluate** $\int_{0}^{\pi/2} \cos^{3}(x) / (\cos^{3}(x) + \sin^{3}(x)) dx$

Problem 6. Let p and q be distinct primes. Show that $\log_p q$ is always an irrational number.

Problem 7. Let a and b be positive numbers. Show that a(1-b) and b(1-a) cannot both be larger than $\frac{1}{4}$.

Problem 8. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Let $\mathbb{N} = \{1, 2, 3, ...\}$ be the set of positive integers and let $h: \mathbb{N} \to \mathbb{N}$ be a one-to-one and onto function. Define a new sequence

 ${b_n}_{n=1}^{\infty}$ by setting $b_n = a_{h(n)}$. We call the sequence ${b_n}_{n=1}^{\infty}$ a "rearrangement" of the original sequence ${a_n}_{n=1}^{\infty}$. For example suppose we take for h, the function h(1)=2, h(2)=1, h(3)=4, h(4)=3, and so on. Then the corresponding rearrangement of ${a_n}_{n=1}^{\infty}$ is ${a_2, a_1, a_4, a_3, a_6, a_5, \dots}$

Show that if the sequence $\{a_n\}_{n=1}^{\infty}$ converges to a limit L then any rearrangement of $\{a_n\}_{n=1}^{\infty}$ also must converge to L.

Problem 9. Suppose that *f* and *g* are continuous real-valued functions on [a, b] and are differentiable on (a, b). Prove that if f(a) = g(a) and f'(x) < g'(x) for all x in (a, b) then f(b) < g(b)

Problem 10. Let R be a rectangle having length L and width W. Find the maximum area of a rectangle that can be circumscribed about R. ("circumscribed" means that the vertices of R must lie on the sides of the larger, circumscribed, rectangle – as in the figure below)

Problem 11. A tank contains 20 kg of salt dissolved in 5000L of water. Brine that contains .03 kg of salt per liter of water enters the tank at a rate of 25L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after ³/₄ of an hour ?

Problem 12. Show that the series $\sum_{n=0}^{\infty} \frac{2^n}{5^n + 1}$ converges and find its sum

Problem 13. Evaluate $\int_{0}^{\pi/2} \frac{\cos^{3000}(x)}{\sin^{3000}(x) + \cos^{3000}(x)} dx$