For current satisfactory scores needed for a particular math course on the UMSL ALEKS Math Placement Examination, please see the chart at http://www.umsl.edu/mathcs/undergraduate-studies/math-prereqs.pdf

MATH 1020 Contemporary Mathematics: 3 semester hours
Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. Presents methods of problem solving, centering on problems and questions which arise naturally in everyday life. May include aspects of algebra and geometry, the mathematics of finance, probability and statistics, exponential growth, and other topics chosen from traditional and contemporary mathematics which do not employ the calculus. May be taken to meet the mathematical proficiency requirement, but may not be used as a prerequisite for other mathematics courses. Designed for students who do not plan to take calculus. Credit will not be granted for MATH 1020 if credit has been granted for MATH 1310, MATH 1800, MATH 1100, MATH 1102, or MATH 1105. Concurrent enrollment in MATH 1020 and any of these courses is not permitted.

MATH 1021 Choice and Chance: 3 semester hours
Same as PHIL 1021. Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. This course provides an introduction to inductive logic and the theory of probability in an organized and systematic way, so as to give students tools for more effective decision-making. We will introduce the probability calculus, basic concepts of utility theory, decision theory and different approaches to understanding probability. This course is designed to be accessible to students of all levels. Satisfies mathematics proficiency.

MATH 1025 Geometry in the Real World: 3 semester hours
Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. Presents topics in geometry designed to enrich the student's understanding of mathematics. Geometry as it applies to the physical world and such fields as art, music, nature, motion, architecture and city planning will be examined. This course is designed to be accessible to students of all levels. Satisfies mathematics proficiency.

MATH 1030 College Algebra: 3 semester hours
Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course, or approval of the department. Topics in algebra and probability, polynomial functions, the binomial theorem, logarithms, exponentials, and solutions to systems of equations.

MATH 1035 Trigonometry: 2 semester hours
Prerequisite: MATH 1030 or MATH 1040, or concurrent registration in either of these two courses, or a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. A study of the trigonometric and inverse trigonometric functions with emphasis on trigonometric identities and equations.

MATH 1040 College Algebra for Science and Engineering: 4 semester hours
Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. Topics in this course include factoring, simplifying rational functions, functions and their graphs, solving linear and nonlinear equations, polynomial functions,
inverse functions, the binomial theorem, logarithms, exponentials, solutions to systems of equations using matrices, solutions to nonlinear systems of equations, and sequences.

MATH 1045 PreCalculus: 5 semester hours
Prerequisites: A satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course, or consent of the department, and enrollment in an academic program that requires Math 1800. This course covers topics including factoring, simplifying rational functions, functions and their graphs, solving linear and nonlinear equations, polynomial functions, inverse functions, the binomial theorem, logarithms, exponentials, solutions to systems of equations using matrices, solutions to nonlinear systems of equations, and sequences. Students will also study trigonometric and inverse trigonometric functions with emphasis on trigonometric identities and equations.

MATH 1100 Basic Calculus: 3 semester hours
Prerequisites: MATH 1030 or MATH 1040 or MATH 1045 or a satisfactory score on the UMSL ALEKS Placement Examination, obtained at most one year prior to enrollment in this course. This course introduces plane analytic geometry and basic differential and integral calculus with applications to various areas. No credit for Mathematics majors. Credit not granted for both MATH 1800 and MATH 1100.

MATH 1102 Finite Mathematics: 3 semester hours
Prerequisites: MATH 1030 or MATH 1040 or MATH 1045 or a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. This course introduces logic and set theory, partitions and counting problems, elementary probability theory, stochastic processes, Markov chains, vectors and matrices, linear programming, and game theory.

MATH 1105 Basic Probability and Statistics: 3 semester hours
Prerequisites: MATH 1030 or MATH 1040 or MATH 1045 or a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. An introduction to probability and statistics. Topics include the concept of probability and its properties, descriptive statistics, discrete and continuous random variables, expected value, distribution functions, the central limit theorem, random sampling and sampling distributions. Credit not granted for more than one of MATH 1310, MATH 1320, and MATH 1105.

MATH 1150 Structure of Mathematical Systems I: 3 semester hours
Prerequisites: 45 hours of college credit and a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course OR successful completion of MATH 1030 no more than 2 years prior to enrollment in this course. A study of sets, relations, functions, whole numbers; the integers and their properties, and the rational and real number systems.

MATH 1310 Elementary Statistical Methods: 3 semester hours
Prerequisites: MATH 1030 or MATH 1040 or MATH 1045 or a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course. An introduction to the basic tools and elementary methods of statistics, such as testing of hypotheses, analysis of variance, method of least squares, and time series. A student may not receive credit for more than one of MATH 1310, MATH 1320, and MATH 1105.
MATH 1320 Introduction to Probability and Statistics: 3 semester hours
Prerequisites: MATH 1030 or MATH 1040 or MATH 1045 or consent of the department. The course will cover basic concepts and methods in probability and statistics. Topics include descriptive statistics, probabilities of events, random variables and their distributions, sampling distributions, estimation of population parameters, confidence intervals and hypothesis testing for population means and population proportions, chi-square tests. A student may not receive credit for more than one of MATH 1310, MATH 1320 and MATH 1105.

MATH 1800 Analytic Geometry and Calculus I: 5 semester hours
Prerequisites: MATH 1030 and MATH 1035, or MATH 1040 and MATH 1035, or MATH 1045, or a satisfactory score on the UMSL ALEKS Math Placement Examination, obtained at most one year prior to enrollment in this course, or approval of the department. This course provides an introduction to differential and integral calculus. Topics include limits, derivatives, related rates, Newton's method, the Mean-Value Theorem, Max-Min problems, the integral, the Fundamental Theorem of Integral Calculus, areas, volumes, and average values.

MATH 1900 Analytic Geometry and Calculus II: 5 semester hours
Prerequisite: MATH 1800. Topics include conic sections, rotation of axes, polar coordinates, exponential and logarithmic functions, inverse (trigonometric) functions, integration techniques, applications of the integral (including mass, moments, arc length, and hydrostatic pressure), parametric equations, infinite series, power and Taylor series.

MATH 2000 Analytic Geometry and Calculus III: 5 semester hours
Prerequisite: MATH 1900. Topics include vectors, cylindrical and spherical coordinates, vector-valued functions, arc length and curvature, functions of several variables, partial and directional derivatives, gradients, extrema, Lagrange multipliers, multiple integrals, change of variables, surface area, vector fields, Stokes' Theorem.

MATH 2010 Introduction to Inquiry Approaches to STEM Education (STEP I): 1 semester hour
Same as CHEM 2010, PHYSICS 2010, BIOL 2010, and SEC ED 2010. Prerequisites: Concurrent enrollment BIOL 1821, BIOL 1831, CHEM 1111, CHEM 1121, PHYSICS 2111, PHYSICS 2112, MATH 1800, or MATH 1900 or have a declared STEM major. Students who want to explore teaching careers become familiar with lesson plan development by writing, teaching and observing lessons in a local school class. Students build and practice inquiry-based lesson design skills and become familiar with and practice classroom management in the school setting. As a result of the STEP I experiences students should be able to decide whether to continue to explore teaching as a career and ultimately finishing the remainder of the WE TEACH MO curriculum leading to teacher certification. The classroom observations and teaching represent a major field component and requires at least one two hour block of free time during the school day once a week.

MATH 2011 Designing Inquiry-Based STEM Experiences (STEP II): 1 semester hour

MATH 2020 Introduction to Differential Equations: 3 semester hours
Prerequisite: MATH 2000. Topics will be chosen from: linear differential equations, equations with constant coefficients, laplace transforms, power series solutions, systems of ordinary differential equations.
MATH 2300 Introduction to Discrete Structures: 3 semester hours
Prerequisites: MATH 1100 or MATH 1800, and CMP SCI 1250. This course treats fundamental mathematical concepts in discrete structures useful for computer science. Topics include logic, sets, equivalence relations and partitions, functions, elementary number theory, cardinality, basic combinatorial methods, trees and graphs.

MATH 2450 Elementary Linear Algebra: 3 semester hours
Prerequisite: MATH 1100 or MATH 1900. An introduction to linear algebra. Topics will include complex numbers, geometric vectors in two and three dimensions and their linear transformations, the algebra of matrices, determinants, solutions of systems of equations, eigenvalues and eigenvectors.

MATH 2510 Structure of Mathematical Systems II: 3 semester hours
Prerequisite: MATH 1150. An introduction to probability and statistics. An intuitive study of elementary geometry. Introduction to the deductive theory of geometry and to coordinate geometry.

MATH 3000 Discrete Structures: 3 semester hours
Prerequisites: MATH 1900 or MATH 1100, and CMP SCI 1250 or equivalent. This course introduces fundamental concepts and important data structures in Discrete Mathematics and serves as an important foundation for subsequent courses in Computer Science. It provides a formal system on which mathematical reasoning is based, and various problem-solving strategies with emphasis on the algorithmic approach (both iterative and recursive). Topics include logic, sets, functions and relations; methods of proof, including mathematical induction; elements of number theory; order of growth and basic analysis of algorithms efficiency; recurrence relations; basic counting methods; graphs and trees. Credit not granted for students with Mathematics major.

MATH 3020 Financial Mathematics II: 3 semester hours
Prerequisites: MATH 3010. This course introduces the premium-discount formula for bonds, bond amortization, term structure of interest rates and pricing theory for options.

MATH 3100 Problem Solving in Mathematics: 1 semester hour
Prerequisite: MATH 2000. Course will train students to solve and write solutions to challenging mathematical problems, like those found in competitive exams like the Putnam Exam.

MATH 3250 Foundations of Mathematics: 3 semester hours
Prerequisites: MATH 1900 and CMP SCI 1250. The course will focus on developing an understanding of proofs and rigorous mathematical reasoning. Topics will include logic, sets, relations, functions, number theory, and counting methods.

MATH 3320 Applied Statistics: 3 semester hours
Prerequisites: MATH 1320. The course will cover topics including multiple regression, analysis of variance, generalized linear models, and applications of these methods. Using R for statistical analysis will be part of the course.

MATH 3520 Structure of Mathematical Systems III: 3 semester hours
Prerequisite: MATH 2510 Together with MATH 1150 and MATH 2510, this course teaches the mathematics necessary for middle school mathematics certification. Topics from MATH 1150 and MATH 2510 are continued. Other topics include geometric constructions, similarity, coordinate geometry, normal distribution, combinatorics, and trigonometry.
MATH 4005 Exploratory Data Analysis with R: 3 semester hours
Prerequisites: MATH 1320, MATH 2000 and MATH 2450. This course covers data analysis methods with R. It introduces the basic goals and techniques of the data science process, methods of characterizing and visualizing data and building predictive and inferential models. R will be introduced at the beginning of the class and then used throughout the rest of the class.

MATH 4010 Financial Mathematics I: 3 semester hours
Prerequisites: MATH 1900 or MATH 1100, and MATH 1320 or LOG OM 3300 (or equivalents). An introduction to the theory of interest, annuities (certain), annuities with differing pay periods, amortization schedules and sinking funds.

MATH 4030 Applied Mathematics I: 3 semester hours
Prerequisite: MATH 2020 and MATH 2450. Topics chosen from Fourier series, special functions, partial differential equations, and boundary value problems.

MATH 4060 Applied Differential Equations: 3 semester hours
Prerequisites: MATH 2020 and MATH 2450. The study of ordinary differential equations and partial differential equations is continued with applications in such areas as physics, engineering and biology.

MATH 4070 Introduction to Nonlinear Optimization: 3 semester hours
Prerequisites: MATH 1320, MATH 2000, MATH 2450 and (MATH 3000 or MATH 3250). This course will introduce the theory, methods, and applications of nonlinear optimization. It will cover convex functions, convex analysis, linear and quadratic programs, semidefinite programming and other optimization problems. Topics may include duality theory, algorithms of descent method, Newton’s method and interior-point methods, and applications to signal processing, statistics and other fields will be covered. Credit cannot be earned for both MATH 4070 and MATH 5070.

MATH 4080 Introduction to Scientific Computation: 3 semester hours
Prerequisites: MATH 2000 and MATH 2450. This course will introduce fundamental algorithms in numerical linear algebra, matrix factorizations including SVD and QR, direct and iterative methods for solving linear systems, least squares problems and eigenvalue problems. Other topics covered will be chosen from numerical integration and differentiation, iterative methods for ODEs and PDEs, Discrete Fourier transform and FFT, spline smoothing and kernel smoothing. Credit cannot be earned for both MATH 4080 and MATH 5080.

MATH 4090 Introduction to High-dimensional Data Analysis: 3 semester hours
Prerequisites: MATH 1320, MATH 2000 and MATH 2450. This course introduces several advanced classical and modern techniques for modeling and analysis of high-dimensional datasets with low-dimensional structures. The topics covered in this course include principal component analysis, factor analysis, clustering-based methods, and sparse and low-rank recovery theory and algorithms. Credit cannot be earned for both MATH 4090 and MATH 5090.

MATH 4100 Real Analysis I: 3 semester hours
Prerequisites: MATH 3250 or consent of the instructor. Introduction to real analysis in one variable. Topics include the real number system, limits, continuity, differentiability, and sequences and series of functions.

MATH 4160 Complex Analysis I: 3 semester hours
Prerequisites: MATH 2000 or consent of the instructor. This course introduces complex numbers and their geometrical representation, point sets, analytic functions of a complex variable, complex integration, Taylor and Laurent series, residue theorem, and conformal mapping.
MATH 4200 Mathematical Statistics I: 3 semester hours
Prerequisites: MATH 1320 and MATH 2000. Introduction to the theory of probability and statistics using concepts and methods of calculus.

MATH 4210 Mathematical Statistics II: 3 semester hours
Prerequisites: MATH 4200. Continuation of MATH 4200. Sampling distributions, estimation theory, properties of estimators, hypothesis testing, NeymanPearson Theorem, likelihood ratio tests, introduction of analysis of variance and linear models. Basics of some nonparametric procedures.

MATH 4220 Bayesian Statistical Methods: 3 semester hours
Prerequisites: MATH 1320, MATH 2000 or MATH 1100; or consent of the instructor. This course introduces Bayesian methods in data analysis and the use of the R language and BUGS. The first half of the course covers inferential theorems and computation methods on fundamental Bayesian statistics, such as estimation, hypothesis testing, MCMC methods, model selection and hierarchical modeling. The second half of the course concentrates on particular models used in practice, such as Bayesian generalized linear models, Bayesian two-factor ANOVA, Bayesian logistic and probit models.

MATH 4225 Introduction to Statistical Computing: 3 semester hours
Prerequisites: MATH 1320, MATH 2000 and MATH 2450. This course will introduce fundamental algorithms in Monte Carlo methods: random variable generation, Monte Carlo integration, Monte Carlo optimization, Markov chain Monte Carlo, Metropolis-Hastings algorithm, Gibbs sampler, Langevin algorithms and Hamilton Monte Carlo, perfect, iterated and sequential importance sampling. Other topics covered may include particle systems, hidden Markov models, parallel and cloud computing. Credit cannot be earned for both MATH 4225 and MATH 5225.

MATH 4230 Numerical Analysis I: 3 semester hours
Prerequisites: MATH 2020, MATH 2450, and the ability to program in an upper-level language. Solutions of equations, interpolation and approximation numerical differentiation and integration, and numerical solutions of initial value problems in ordinary differential equations. Selected algorithms will be programmed for solution on computers.

MATH 4250 Introduction to Statistical Methods in Learning and Modeling: 3 semester hours
Prerequisites: MATH 1320, MATH 2000 and MATH 2450. This course will introduce basic statistical principles and methods for modeling, inference, prediction and classification. The topics will be chosen from linear regression, basis expansion methods, kernel smoothing methods, model regularization, model selection and assessment, and other nonparametric methods. Credit cannot be earned for both MATH 4250 and MATH 5250.

MATH 4260 Introduction to Stochastic Processes: 3 semester hours
Prerequisites: MATH 4200. Basic theory and applications of stochastic processes. Markov chains, recurrent and transient states, stationary distributions, ergodic theorem, renewal processes, discrete martingales and stationary processes.

MATH 4350 Theory of Numbers: 3 semester hours
Prerequisites: MATH 2450 and either MATH 3000 or MATH 3250; or consent of instructor. This course examines the properties of integers, multiplicative functions, congruences, primitive roots, and quadratic residues.

MATH 4390 Topics in Probability and Statistics: 3 semester hours
Prerequisites: Consent of Instructor. A seminar on special topics in probability and statistics to be determined by the interests of the instructor. May be repeated for credit provided different topics are studied.
MATH 4400 Introduction to Abstract Algebra I: 3 semester hours
Prerequisites: MATH 2450 and MATH 3250; or consent of instructor. This course introduces groups, rings, and fields, with an emphasis on groups and rings.

MATH 4450 Linear Algebra: 3 semester hours
Prerequisites: MATH 2450 and MATH 3250; or consent of instructor. This course focuses on topics selected from vector spaces, bases, linear transformations, matrices, canonical forms, eigenvalues, hermitian and unitary matrices, inner product spaces, and quadratic forms.

MATH 4460 Introduction to Coding Theory: 3 semester hours
Prerequisites: MATH 2450 and either MATH 3000 or MATH 3250. This course is an introductory course in coding theory. Topics may include linear codes, generator and parity check matrices, dual codes, weight and distance, encoding and decoding, and the Sphere Packing Bound; various examples of codes like the Hamming codes, Golay codes, binary Reed–Muller codes, and the hexacode; Shannon’s theorem for the binary symmetric channel, upper and lower bounds on the size of linear and nonlinear codes; constructions and properties of finite fields, basic theory of cyclic codes; concepts of idempotent generator, generator polynomial, zeros of a code, and defining sets, special families of BCH and Reed-Solomon cyclic codes as well as generalized Reed-Solomon codes. Credit cannot be granted for both MATH 4460 and MATH 5460.

MATH 4500 Special Readings: 1-10 semester hours
Prerequisites: 6 credit hours at the Math 4000 level and consent of the instructor. Advanced topics in Mathematics. May be repeated for credit if the topic differs.

MATH 4550 Combinatorics: 3 semester hours
Prerequisites: MATH 2450 and either MATH 3000 or MATH 3250; or consent of instructor. This course introduces advanced counting methods including the use of generating functions for the solution of recurrences and difference equations. Additional topics may include: graphs and trees, combinatorial designs, combinatorial games, error-correcting codes, and finite-state machines.

MATH 4580 Mathematical Logic: 3 semester hours
Prerequisites: Either MATH 2450 and MATH 3250, or PHIL 4460; or consent of instructor. This course focuses on a study of the logic of mathematics by the axiomatic method, with a development of the propositional calculus and restricted predicate calculus emphasizing its application to the foundations of mathematics.

MATH 4620 Projective Geometry: 3 semester hours
Prerequisites: MATH 2000, MATH 2450, and MATH 3250; or consent of instructor. This course provides an analytic approach to the study of projective spaces. Theorems of Desargues, Pascal, and Brianchon and projective properties of conics are studied.

MATH 4660 Foundations of Geometry: 3 semester hours
Prerequisites: MATH 2450 and MATH 3250; or consent of instructor. This course focuses on a development of portions of Euclidean geometry from a selected set of axioms, including a discussion of consistency, independence, categoricity, and completeness of the axioms.

MATH 4670 Introduction to Non-Euclidean Geometry: 3 semester hours
Prerequisites: MATH 2000, MATH 2450, and MATH 3250; or consent of instructor. This course focuses on a summary of the history of the non-Euclidean geometries and a study of hyperbolic plane geometry.
MATH 4800 Introduction to Topology: 3 semester hours
Prerequisites: MATH 2000 and MATH 3250; or consent of instructor. This course focuses on the study of topological spaces, including the concepts of limit, continuity, connectedness, compactness, etc. Special emphasis is placed on, and examples taken from, the space of real numbers.

MATH 4890 Topics in Mathematics: 3 semester hours
Prerequisite: Consent of Instructor.

MATH 4995 Internship in Actuarial Science: 1-3 semester hours
Same as ECON 4995. Prerequisites: Junior standing and consent of program director. Supervised off-campus training in a private or public sector position in which the student applies the knowledge and skills learned in their actuarial science coursework. The internship is monitored by a faculty member and the student must provide a written report at the end of the project. This course may be repeated for a maximum of 6 credit hours.