Straight-Party Ballot Options and State Legislative Elections

David C. Kimball
University of Missouri-St. Louis
dkimball@umsl.edu

Chris T. Owens
Texas A&M University
cowens@polisci.tamu.edu

Matt McLaughlin
University of Missouri-St. Louis
mjmmvd@studentmail.umsl.edu

Straight-Party Ballot Options and State Legislative Elections

The Florida recount controversy following the 2000 presidential election has brought renewed attention to election administration issues, especially those involving voting technology and ballot design. However, while much of the subsequent journalistic coverage and legislative proposals are devoted to punch cards and “hanging chad”, one ballot feature that has largely escaped notice is the straight-party option (which allows a voter to cast a straight-party ballot with one selection). Once a common ballot feature in the United States, the straight-party option is slowly disappearing. Only 17 states featured the option on ballots in the 2000 general election, and several of the remaining states are considering legislation to remove it.

Political parties and candidates are acutely aware that the configuration of the ballot can influence election results. In Illinois, for example, party mobilization campaigns that emphasized the straight-ticket device (especially Democratic “Punch 10” campaigns) have been credited with influencing election outcomes (Day and Becker 1984; Lewis, Taylor, and Kleppner 1997; Hayler and Mouw 1999). Thus, it is not unusual for states to manipulate the ballot’s appearance in an effort to secure an apparent electoral advantage for one party (Walker 1966; Key 1958). In fact, the straight-party mechanism has often been the subject of election disputes (Darcy and Schneider 1989; Hamilton and Ladd 1996; Butler and Wolf 1995 pp. 426-8; Bullock and Mishou 1999,

1 We are grateful to Roxanne Harrelson, Pat Hennes, Katherine McAndrew Keeney, Albert Prah, and Matthew Tait for help collecting the data used in this paper. We also acknowledge the assistance of Dan Hagan (Illinois Board of Elections) for help obtaining precinct-level election data, as well as Kevin Davie, Jim LeBeau, and Brian Harger for help collecting census data. Thanks to Laura Arnold, Barb Brown, James
p.3 fn. 3). More recently, successful Republican-led efforts to remove the straight-party option in Illinois and Michigan provoked fierce partisan debates about the impact of such a change.

Given the movement away from the straight-ticket ballot option, and disputes over its presence on the ballot, the impact of the one-punch device (and its removal from the ballot) deserves more careful scrutiny. Such an examination might inform the reform debates that are likely to change election administration policy at the state and national level. We attempt to answer several questions about the straight-party ballot option. (1) Which states still include it on the ballot? (2) How many voters use it? (3) Which voters are most likely to cast a ballot by using the straight-party punch? (4) Does the straight-party have much of an effect in reducing the number of ballots that fail to record a vote for a particular office? (5) Which political party stands to gain or lose from the elimination of the straight-party punch? To answer these questions, we analyze county-level election results from the 2000 presidential election. We also examine local election results from Illinois before and after the state dropped straight-party voting in 1997.

Theory

Generally, it is accepted wisdom that the straight-party ballot option influences voters in two ways: (1) it reduces ticket splitting and (2) reduces the number of ballots with unrecorded votes for particular offices, often termed “ballot roll-off” (Bullock and Dunn 1996). Voters who lack information about full the range of candidates and issues

Endersby, John Jackson, Mike Lawrence, Dan Lipinski, David Orr, and John Womick for comments and suggestions related to this paper.
that confront them on a ballot use an array of decision-making shortcuts to simplify the voting process (Popkin 1991; Lupia and McCubbins 1998). The straight-party ballot mechanism provides voters with perhaps the simplest and quickest decision-making shortcut, and it taps into one of the strongest voting cues, party identification.

Eliminating the one-punch option, while requiring the voter to make a selection for each office, also reduces the salience of the partisan cue on the ballot and may force the voter to rely on other information (such as the qualities of individual candidates) to guide one’s choices.

Unrecorded Votes

Voters may fail to record a choice for a contest as a result of “undervoting” (where voters make no selection) or “overvoting” (where too many candidates are selected. One explanation of unrecorded votes is “voter fatigue” – voters grow weary of having to make numerous selections on a long ballot and thus abstain from contests (undervote) at or near the bottom of the ballot (Bullock and Dunn 1996). The straight-party option is an antidote to voter fatigue, for it gives voters a way to complete an entire ballot in a very short amount of time. Removing the straight-party option lengthens the time spent in a voting booth for those accustomed to one-punch voting, as voters would have to make a selection for each office in order to complete a ballot. Thus, in the absence of a one-punch device, undervoting is a likely response to voter fatigue, especially in less salient races that appear at or near the bottom of the ballot.
Ballot confusion is another explanation for unrecorded votes. Voters may overvote or undervote when they are confused by the voting technology, ballot instructions, or ballot design (Wand et al. 2001; Darcy and Schneider 1989). Here too, the straight-party device may provide relief by giving voters a way to complete a ballot while avoiding confusion and mistakes that might occur voting office-by-office.

Thus, there are reasons to hypothesize that the straight-party option increases the number of valid ballots cast in an election. Two studies provide evidence to increase our confidence in this hypothesis. Walker (1966) finds roll-off to be more common in states with an office-block ballot (which groups candidates by office) than in states with a party-column ballot (which groups candidates by party). In a study of voting in Oklahoma, Darcy and Schneider (1989) find that unrecorded votes were more common in counties where the ballot design caused confusion about the applicability of the straight-party option. In both studies, the increase in unrecorded votes due to ballot design fell disproportionately on less educated (Walker 1966) or minority voters (Darcy and Schneider 1989). Thus, the removal of the straight-party ballot option might disproportionately affect demographic groups most likely to cast ballots with unrecorded votes (such as less educated voters, elderly voters, and minorities).

Ticket Splitting

As discussed above, we should expect that the consistency of a voter’s support for candidates of a particular party is a function of the ease with which a voter can register a preference for a single party. Here the evidence is much clearer. Studies of recent and
distant national elections find that ticket splitting is less common in states with a straight-
party option on the ballot (Campbell et al. 1960; Campbell and Miller 1957; Rusk 1970;
Burden and Kimball 1998). In addition, gubernatorial coattails are stronger (Weber
1980) and the incumbency advantage for state legislators is weaker (Jewell 1982) in
states with one-punch voting. Thus, we expect an increase in ticket splitting after a state
removes the straight-party option from the ballot.

Which States Still Have Straight-Party Voting?

Once a mainstay of American voting after the adoption of the Australian ballot
(Rusk 1970), straight-party voting is gradually disappearing from American ballots. As
recently as the 1960s over half of the states featured a straight-party punch on the ballot
(Rusk 1970; Kimball, Owens, and McAndrew 2001). In the 2000 general election, only
17 states included some type of straight-party voting option on the ballot. As Figure 1
indicates, the straight-party option is largely confined to ballots in the southern and
rustbelt regions of the United States, with a few exceptions. In the South, the straight-
party device is likely a residue of Democratic party dominance. In the industrial northern
states, it may reflect a tradition of party competition and relatively strong party
mobilization efforts.

In 2002, the straight-party option will be on the ballot in just 16 states. The state
government in Michigan recently passed a law to remove the straight-party option from
the ballot, although Democrats in Michigan appear to have gathered enough petition

2 In Oklahoma counties with optical scan ballots, the one-punch option at the top of the scan sheet only
applied to the first group of offices, not to contests at the bottom of the ballot or on the reverse side.
signatures to force a statewide referendum on the issue in the November, 2002 election (hence the shading in Figure 1). Thus, in the state’s first election in decades without straight party voting, voters may be able to decide whether to continue the tradition.

[Figure 1 about here]

How Many Voters Use the Straight-Party Option?

Based on a non-random sample of states and other jurisdictions where data are available, on average roughly one-third of the voters use the straight-party option when it is on the ballot (see Table 1). Of course, the frequency of straight-party voting varies. It appears that voters outside of the South and the rustbelt (as in Rhode Island and Utah) use the straight-party option less frequently. Not surprisingly, the direction of straight-party voting tends to reflect party strength in each jurisdiction. In GOP-friendly Utah, more voters punch a Republican straight-party ticket than a Democratic straight-party ticket. In contrast, in states with a Democratic tilt (and especially in urban areas), Democratic straight-party ballots are more common. Based on the high straight-party Democratic voting in Detroit in the 2000 election, one can see why GOP strategists would want to remove the one-punch option from the ballot in Michigan. In any case, given that a significant number of voters use the straight-party device, its elimination would fundamentally alter the process of casting a ballot for many voters.

[Table 1 about here]
Where Are Straight-Party Ballots Most Commonly Cast?

To get a better sense of the determinants of straight-party voting, we examine the Illinois case. The straight-party option graced Illinois ballots for over 100 years before being removed in 1997. We examine the frequency of straight-party voting in Illinois in one off-year election (1990) and one on-year election (1996) shortly before the change in ballot design was implemented.

We collected voting returns for Illinois precincts in both elections. To examine some of the correlates of one-punch voting, we merge the voting data with census data drawn primarily from the 1990 census. Since census blocks (the smallest geographic level of aggregation for census data) often do not match up perfectly with precinct boundaries (which are drawn for political reasons), we merge the two sources of data at the township level (or minor civil division), except for the city of Chicago. Since Chicago is a single township, we merged the electoral and census data within city wards. There are 1679 townships in Illinois (excluding Chicago), plus 50 Chicago wards, totaling 1729 geographic units that cover the state of Illinois. Seven small townships could not be merged with census data for a variety of reasons (overlapping boundaries, missing census data), giving us a working data set of 1722 observations.

3 Almost all jurisdictions reported the number of ballots cast and the number of one-punch votes for each party at the precinct level in each election. One jurisdiction used lever machines which were not programmed to record one-punch totals (East St. Louis) while a few others did not record one-punch voting at the precinct level or did not maintain election records that far back in time (Adams and Rock Island counties in 1990).

4 The voting data (with the exception of one-punch totals) for 1990 are from the Record for American Democracy (ROAD) database (King et al. 1997). Election totals for 1996, 1998, and 2000 (and the one-punch totals for 1990) come from the Illinois State Board of Elections and individual county and city election agencies. Census data for Illinois townships come from the ROAD database. Census data for Chicago wards in 1990 were provided by Jim LeBeau (Administration of Justice program, Southern Illinois University at Carbondale). Census data for Chicago wards in 1998 come from Brian Harger (Institute for Governmental Studies, Northern Illinois University). These generous sources bear no responsibility for the analyses in this paper.
We examine four demographic variables as predictors of straight-party voting in Illinois. Two independent variables measure the share of the population in each geographic unit that is black and Hispanic, respectively. We also include a measure of the proportion of residents over 65 years old. Finally, we examine the logged median house value as a proxy for income. These variables were chosen based on previous studies (Price 1957; Bullock and Mishou 1999) and a sense of likely party coalitions in Illinois. In addition, interest groups representing African-Americans, Hispanics, senior citizens, and the poor joined with Democratic officeholders to mount a legal challenge against the law removing the straight-party ballot option. While the legal challenge failed, it argued that the ballot change would interfere with the voting rights of minorities, the poor, and elderly voters (Kimball and Owens 2000).

We create separate dependent variables for the frequency of one-punch voting for each major political party, and we use ordinary least squares regression to assess the impact of each of the independent variable described above. Since the number of voters varies across townships, we weight the data by the number of ballots cast. We urge some caution in interpreting the results of the multivariate analyses that follow. Given the aggregate nature of the data, ecological fallacies are possible. That is, if one-punch voting is more common in areas with large elderly populations, we do not know if it is elderly voters or young voters who are casting the one-punch ballots. This is less of a problem with the black and Hispanic population measures. Given the segregated housing patterns in Illinois, most geographic units have either very large or very small minority populations.
Table 2 provides the results of our multivariate analysis of one-punch voting in 1990 and 1996. The results add context to the partisan debate over one-punch voting, and they suggest why minority groups and Democratic officeholders led the fight to keep one-punch voting on the ballot in Illinois and Michigan. The independent variables have opposing effects when comparing Republican versus Democratic one-punch voting. One-punch Democratic voting is more common in areas with large black, Hispanic, and elderly populations, and less common in areas with high housing values. For instance, in 1990 a .10 increase a township’s share of elderly residents is expected to increase the proportion of Democratic one-punch ballots by .054. In contrast, Republican one-punch voting is more common in areas with highly valued housing units and less common in areas with high concentrations of black, Hispanic, and elderly citizens.

The demographic basis for straight-party voting is stronger in 1996 than in 1990, as indicated by the larger regression coefficients and goodness-of-fit statistics. This is likely the result of increased party mobilization efforts directed toward these groups in 1996, part of a trend of rising one-punch voting during the 1990s (Lewis, Taylor, and Kleppner 1997). At the same time, the locations of strong one-punch voting remain fairly constant from one election to the next. The correlation between GOP straight-party voting in 1990 and 1996 is .84, and the correlation between Democratic straight-party voting in 1990 and 1996 is .76.

The demographic measures that help explain Democratic one-punch voting are some of the same factors that predict the number of ballots cast with unrecorded votes. Thus, it is reasonable to hypothesize that the straight-party option reduces the number of unrecorded votes, particularly among minority groups.
Does the Straight-Party Option Reduce the Number of Unrecorded Votes?

We also hypothesize that the number of unrecorded votes should be less common in states that allow straight-party voting. To test this hypothesis, we examine the number of ballots cast and votes for president in American counties in the 2000 general election. For a national study, we examine counties as the unit of analysis because in most states elections are administered at the county level (where decisions about voting technology are usually made, for example).

We collected official election results from secretary of state offices or county election officials. We calculate the difference between the number of ballots cast and the number of votes cast for president as a percentage of ballots cast as the dependent variable. We have complete data on unrecorded votes in the 2000 presidential election for 2895 counties (92% of the total), representing 95% of votes cast for president in the 2000 election. Among the counties in our sample, 1,853,267 residual votes were cast in the presidential contest (1.8% of ballots cast). The distribution of unrecorded presidential votes across counties is skewed, with outliers at the high end. Residual vote percentages range from .02% to 15.0%, with a median of 1.7%, a mean of 2.3%, and a standard deviation of 1.9%.

We also examined sample ballots from each state to identify the presence of a straight-party option. While 17 states had a straight-party option on the 2000 ballot, only 15 states had a straight-party option that applied to the presidential contest. In North and

5 See Kimball, Owens, and McAndrew (2001) for more details on the county-level data collection.
South Carolina the straight-party option comes after the presidential contest, so the presidential selection must be cast separately. Thus, slightly less than 30% of the voters in the 2000 election had a straight-party option that would have applied to the presidential contest.

Table 3 compares the unrecorded vote rates in the 2000 presidential election for states with and without the straight-party mechanism on the ballot. The first column provides the unrecorded vote rate averaged across all counties, in which each county is weighted equally. Some may object to calculations that weigh a county of 1,000 voters the same as a county of 50,000 voters. Thus, the second column presents an aggregate unrecorded vote rate calculated across all ballots cast in that category of states. The aggregate unrecorded vote rate is equivalent to a weighted mean where each county is weighted by the number of ballots cast.

The evidence in Table 3 supports our hypothesis about ballot format. The mean unrecorded vote rate is one percentage point higher in states without the straight-party mechanism, and the disparity is .7 percentage points when unrecorded votes are calculated across all ballots. This difference is statistically significant and roughly the same magnitude when controlling for a host of other demographic and election administration factors, including voting technology, in a multivariate analysis (Kimball, Owens, and McAndrew 2001). The effect of straight-party voting is substantively
important too. In a national electorate of 100 million voters, a one-percent increase means roughly an additional 1 million unrecorded votes.\(^6\)

We also hypothesize that the straight-party ballot option is especially effective at reducing the number of unrecorded votes among certain demographic groups (minorities and low-income voters). The demographic factors correlated with straight-party Democratic voting are among the factors that predict unrecorded votes. Several studies show that unrecorded votes are more common in counties or precincts with large populations of racial and ethnic minorities (Price 1957; Walker 1966; Vanderleeuw and Engstrom 1987; Darcy and Schneider 1989; Vanderleeuw and Utter 1993; Bullock and Dunn 1996; Sheffield and Hadley 1984; Nichols and Strizek 1995; Harris and Zipp 1999), low-income residents (Darcy and Schneider 1989; Nichols and Strizek 1995; Kimball and Owens 2000), less-educated citizens (Nichols 1998; Nichols and Strizek 1995), or elderly voters (Darcy and Schneider 1989; Kimball, Owens, and McAndrew 2001; but see Nichols and Strizek 1995).

For groups that are more likely to face confusion when completing a long ballot (because of language difficulties, lack of education, or a disability), we expect that the straight-party option provides a relatively simple way to complete the ballot. Thus, the racial and economic disparity in unrecorded votes should be reduced in states that include the straight-party feature on the ballot. Put differently, the increased unrecorded votes observed in states without straight-party voting should fall disproportionately on precincts or counties with large minority or low-income populations.

\(^6\) In at least six states (Florida, Iowa, New Hampshire, New Mexico, Oregon, and Wisconsin), the number of unrecorded presidential votes in 2000 was larger than the vote margin between Bush and Gore.
To test this hypothesis, we examine the predictors of unrecorded presidential votes in 2000 in two separate multivariate regression analyses: one for states with straight-party voting and the other for states without straight-party voting. Using those results, we held all other factors constant at median values except a county’s racial composition. We then calculated the expected frequency of unrecorded votes at different values for the percentage of African-American residents in a county. The results are plotted in Figure 2, including 95% confidence bands.

Our evidence supports the hypothesized interaction between race and the straight-party ballot option in determining the number of ballots cast without valid votes for president. The straight-party ballot option substantially reduces the demographic disparity in unrecorded presidential votes (see Figure 2). The size of a county’s African-American population is a powerful influence on the frequency of unrecorded votes in states without the straight-party preference. In contrast, race is only a weak predictor of unrecorded votes in states that have the straight-party punch on the ballot. In a similar analysis not included here, the discrepancy in unrecorded presidential votes between rich and poor counties vanishes in states with a straight-party voting option on the ballot (Kimball, Owens, and McAndrew 2001).

To this point, we have examined the impact of the straight-party mechanism on unrecorded votes in a cross-sectional analysis. Those skeptical of

7 See Kimball, Owens, and McAndrew (2001) for the complete regression results.
the reported effects might argue that the states which happen to have straight-party voting possess other unmeasured qualities (efficient election administrators, well-designed voter education procedures, or high levels of civic duty among citizens) that might account for the rather large reduction in residual votes that we attribute to the straight-party option. There are two reasons not to be skeptical of the effect we ascribe to straight-party voting.

First, the states with straight-party voting in 2000 are not the states one would expect to see at the top of a list of “good government” indicators. There are no significant differences in government management (Government Performance Project 2001) between states with and without straight-party voting. Second, with many jurisdictions upgrading to optical scan ballots for the 2000 election (and with an extremely competitive presidential contest), one would expect the number of ballots with unrecorded presidential votes to drop from 1996 to 2000. Indeed, that is what one finds in almost every state, with one glaring exception. The percentage of unrecorded presidential votes in Illinois increased from 2.4% in 1996 to 3.9% in 2000 (the highest rate in the country for states with complete data). Not coincidentally, Illinois eliminated the straight-party punch after the 1996 election.

In the 1996 election, almost every jurisdiction in Illinois used the infamous punch card voting methods. Several Illinois counties and cities switched to optical scan ballots in time for the 2000 election. In almost every county that upgraded to the newer voting technology, the number of ballots with

8 We created Figure 2 using Clarify software (Tomz, Wittenberg, and King 2001; King, Tomz, and Wittenberg 2000) with Stata version 7.
unrecorded presidential votes dropped from 1996 to 2000. Thus, the increase in the number of unrecorded presidential votes in Illinois was concentrated in the jurisdictions that continued using punch card ballots.

If the straight-party option has this effect on presidential voting (the top contest receiving the most media coverage in the country’s biggest election), it could have a bigger effect on other races that appear farther down the ballot. We turn next to an examination of unrecorded votes in statewide and local contests in Illinois. In particular, we test whether the same factors that help predict one-punch voting in townships and wards can account for variation in ballot roll-off. Table 4 provides estimates from a multivariate analysis of unrecorded votes in statewide contests and competitive state legislative races in 1990. Recall that the straight-party option was still on the ballot in 1990. The dependent variable is simply the fraction of all ballots that failed to record a valid vote for the office in question. Thus, positive regression coefficients indicate factors that increase the number of unrecorded votes.

[Table 4 about here]

The results in Table 4 again conform to our expectations. Almost every relationship tested is statistically significant and in the expected direction. Unrecorded votes are more common in places with large concentrations of black, Hispanic, and elderly citizens, while unrecorded votes are less common in wealthier areas with highly valued houses. Interestingly, the contest in which the relationship between race and unrecorded votes is weakest is the Attorney General race, the only contest to feature an
African-American candidate. This is consistent with other studies of the relationship between race and ballots with unrecorded votes (Vanderleeuw and Utter 1993; Harris and Zipp 1999; Vanderleeuw and Engstrom 1987).

We also see that the one-punch device acts as a bulwark against unrecorded votes. Unrecorded votes in most contests are less common in areas where one-punch voting for either party is high. We see additional support for a “voter fatigue” theory of roll-off in that the impact of one-punch voting in stemming roll-off increases as one moves farther down the ballot. Similarly, the estimated impact of some of the demographic variables on unrecorded votes increases as one moves down the ballot. The one glaring exception is in state legislative contests. Our estimates indicate that a .10 increase in the share of straight-party Democratic ballots reduces the proportion of ballots with unrecorded votes in state legislative races by .014. In contrast, Republican one-punch voting has no impact on the number of unrecorded votes in state house races.

Here we gain a clearer understanding of the partisan debate over one-punch voting in Illinois. The same factors that account for Democratic one-punch voting (large minority and elderly populations and low house values) also predict higher levels of ballot with unrecorded votes. In contrast, the predictors of one-punch Republican voting predict lower levels unrecorded votes. Since ballot completion is more of a problem in areas with a demographic profile favorable to Democrats, one can understand why Democratic politicians are more concerned about unrecorded votes than Republicans. In addition, the uneven impact of one-punch voting on state legislative elections may help us understand why Democratic legislators want to keep the straight-party option on the ballot while GOP legislators want to remove it.
The evidence to this point is still suggestive in the sense that areas with high levels of one-punch voting may simply contain large concentrations of strong party loyalists who would simply complete a straight-party ticket office-by-office once the straight-party option is removed from the ballot. To address this concern, we examine the number of ballots with unrecorded votes in the 1998 general election, the first election in Illinois after the straight-party option was removed from the ballot. We again examine the same demographic predictors of unrecorded votes as in Table 4. In addition, since township boundaries in Illinois do not change, we also test whether the number of unrecorded votes in 1998 is more or less common in areas that experienced high levels of one-punch voting in 1990. The one difficulty in carrying out this analysis is that ward boundaries in Chicago changed between 1990 and 1998. Thus, we overlayed Chicago ward maps from 1998 on precinct maps from 1990 to calculate frequency of one-punch voting in 1990 within each of Chicago wards that existed in 1998.

Our estimates in Table 5 suggest that eliminating one-punch voting hurt Democratic candidates, but not Republicans, especially in state legislative races. After controlling for the same demographic variables, areas with high levels of one-punch Democratic voting in 1990 tended to have higher than average rates of unrecorded votes in 1998. Again, the disparate impact of the straight-party ballot option is strongest in state legislative contests. By our estimates, a .10 increase in the share of Democratic one-punch ballots increased the expected proportion of ballots with unrecorded state house votes by .017. In contrast, high GOP one-punch voting translates into lower rates of unrecorded votes in 1998, after the straight-party option was removed from the Illinois ballot. This effect is strongest in state legislative elections too.
Finally, the effects of race and ethnicity on unrecorded votes are weakest in contests with an African-American candidate (U.S. Senate and Secretary of State) or Hispanic candidate (Attorney General) on the ballot. This probably hurt the electoral fortunes of Glenn Poshard, the Democratic candidate for governor in 1998. In 27 jurisdictions where blacks comprised at least a majority of the population, ballot roll-off averaged 7% in the U.S. Senate and Secretary of State races (which both featured black candidates) but averaged 12% in the Governor’s race, even though the choice for Governor appeared before the Secretary of State race on the ballot. Variation in the number of unrecorded votes across the statewide offices was substantially higher in majority-black areas in 1998 as compared to 1990. Given the prevalence of one-punch voting in minority communities before 1998, this is one targeted area where the absence of the one-punch mechanism may have hurt some Democratic candidates.\(^9\)

It is hard to escape that conclusion that the presence of a straight-party option on the ballot helps Democratic candidates, while its absence helps Republican candidates. In addition, the disparate partisan impact is stronger in state legislative contests than in statewide races. Part of the reason for this is indirect. The same factors that explain Democratic one-punch voting also explain variation in the number of ballots cast with unrecorded votes. Thus, Republican voters in Illinois appear more likely to complete a ballot in the absence of the one-punch option. One study of actual ballots finds that when the straight-party option is available, GOP more likely to vote a straight ticket the

\(^9\) In fact, Poshard believes that the absence of one-punch voting cost him many votes in 1998 (personal communication, March 29, 2000).
conventional way without using the straight-party punch (Scheele, Cranor, and Crawley 2002).
Conclusion

A substantial number of voters use the straight-party ballot option, when available. Thus, removing it in states where it has been on the ballot for a long time will change the process of casting a ballot for many voters. Nevertheless, several states recently eliminated the straight-party device from the ballot, and several more are considering similar ballot changes. Such changes will likely increase the number of ballots cast with unrecorded votes in future elections, especially in down-ballot races, thus increasing the likelihood of another election dispute like the one in Florida immediately after the 2000 presidential election.

Furthermore, in the current march toward election reform it is important to look beyond voting technology. Switching to a new voting technology can be very costly, while relatively inexpensive changes in ballot design may have a bigger effect in reducing the number of unrecorded votes in future elections. Adding a straight-party ballot line in states that currently do not feature that option may help voters complete an error-free ballot and minimizing the number of unrecorded votes. On the other hand, the likely partisan impact of the straight-party ballot option is unavoidable. Democrats seem to benefit from its presence on the ballot more than Republicans, especially in contests that matter most to the state legislators likely to vote on any changes in ballot design.
References

Figure 1

States with Straight-Party Voting in 2000
Table 1
The Frequency of Straight-Party Voting in Selected Jurisdictions

<table>
<thead>
<tr>
<th>State</th>
<th>Democratic one-punch</th>
<th>Republican one-punch</th>
<th>Major-party one-punch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama*</td>
<td>24.4%</td>
<td>21.1%</td>
<td>45.5%</td>
</tr>
<tr>
<td>Utah*</td>
<td>10.6%</td>
<td>19.5%</td>
<td>30.1%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>11.4%</td>
<td>4.1%</td>
<td>15.5%</td>
</tr>
<tr>
<td>St. Louis County, MO</td>
<td>26.8%</td>
<td>18.3%</td>
<td>45.1%</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>67.1%</td>
<td>3.1%</td>
<td>70.2%</td>
</tr>
<tr>
<td>Illinois (1996)</td>
<td>21.4%</td>
<td>16.8%</td>
<td>38.2%</td>
</tr>
<tr>
<td>Georgia* (1988)</td>
<td>27.1%</td>
<td>18.9%</td>
<td>46.0%</td>
</tr>
</tbody>
</table>

Figures are from the 2000 general election except where noted in parentheses. Figures based on partial election returns from a state are marked by asterisk.
Table 2

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Democratic Punch</th>
<th>Republican Punch</th>
<th>Democratic Punch</th>
<th>Republican Punch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.82** (28.15)</td>
<td>-0.22** (-10.48)</td>
<td>0.36** (10.44)</td>
<td>-0.30** (-10.41)</td>
</tr>
<tr>
<td>Black Residents</td>
<td>0.06** (9.37)</td>
<td>-0.09** (-19.99)</td>
<td>0.46** (64.48)</td>
<td>-0.16** (-26.38)</td>
</tr>
<tr>
<td>(Proportion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic Residents</td>
<td>0.27** (18.90)</td>
<td>-0.07** (-6.75)</td>
<td>0.50** (35.31)</td>
<td>-0.15** (-12.80)</td>
</tr>
<tr>
<td>(Proportion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residents 65 or Older</td>
<td>0.54** (15.33)</td>
<td>-0.52** (-20.15)</td>
<td>1.02** (24.12)</td>
<td>-0.72** (-20.35)</td>
</tr>
<tr>
<td>(Proportion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median House Value</td>
<td>-0.066** (-25.51)</td>
<td>0.034** (18.14)</td>
<td>-0.024** (-8.04)</td>
<td>0.049** (19.23)</td>
</tr>
<tr>
<td>(natural log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>1626</td>
<td>1626</td>
<td>1602</td>
<td>1587</td>
</tr>
<tr>
<td>R²</td>
<td>.50</td>
<td>.51</td>
<td>.84</td>
<td>.62</td>
</tr>
<tr>
<td>Std. Error of Estimate</td>
<td>0.06</td>
<td>0.04</td>
<td>.07</td>
<td>.06</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the frequency of straight-party voting as a proportion of all ballots cast. The unit of analysis is Illinois townships and wards in the city of Chicago. Data are weighted by the number of ballots cast in each jurisdiction. Cell entries are OLS coefficients (t-values in parentheses).

**p<.01 (two-tailed)
Table 3
Unrecorded Votes in the 2000 Presidential Election by Ballot Format
(U.S. Counties)

<table>
<thead>
<tr>
<th>Ballot Format</th>
<th>Mean Unrecorded Votes</th>
<th>Aggregate Unrecorded Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-Party Punch (15 states, 1011 counties, 28% of ballots)</td>
<td>1.6% (1.2%)</td>
<td>1.3%</td>
</tr>
<tr>
<td>No Straight Party Punch (35 states, 1884 counties, 72% of ballots)</td>
<td>2.6% (2.0%)</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

“Mean Unrecorded Votes” is the average across all counties in the category (standard deviation in parentheses). “Aggregate Unrecorded Votes” is calculated across all ballots cast (equivalent to a weighted mean where each county is weighted by the number of ballots cast).
Figure 2
Percentage of Unrecorded Votes in the 2000 Presidential Election (U.S. Counties)

Whiskers indicate 95% confidence intervals.

○ No Straight-Party Option △ Straight-Party Option

Black Percentage of Population
Table 4
A Multivariate Analysis of Unrecorded Votes in Illinois Townships and Chicago Wards (1990)

<table>
<thead>
<tr>
<th>Contest</th>
<th>U.S. Senate</th>
<th>Governor</th>
<th>Atty. General</th>
<th>Sec. State</th>
<th>Comptroller</th>
<th>Treasurer</th>
<th>State House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.19**</td>
<td>0.15**</td>
<td>0.09**</td>
<td>0.01</td>
<td>0.22**</td>
<td>0.17**</td>
<td>-0.27**</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(21.96)</td>
<td>(19.68)</td>
<td>(10.05)</td>
<td>(0.89)</td>
<td>(18.43)</td>
<td>(13.68)</td>
<td>(-5.88)</td>
</tr>
<tr>
<td>Black Residents (Proportion)</td>
<td>0.09**</td>
<td>0.12**</td>
<td>0.07**</td>
<td>0.12**</td>
<td>0.11**</td>
<td>0.12**</td>
<td>0.16**</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(51.66)</td>
<td>(79.33)</td>
<td>(39.91)</td>
<td>(61.40)</td>
<td>(45.95)</td>
<td>(50.39)</td>
<td>(8.18)</td>
</tr>
<tr>
<td>Hispanic Residents (Proportion)</td>
<td>0.05**</td>
<td>0.07**</td>
<td>0.08**</td>
<td>0.09**</td>
<td>0.08**</td>
<td>0.07**</td>
<td>0.06</td>
</tr>
<tr>
<td>Residents 65 or Older (Proportion)</td>
<td>0.13**</td>
<td>0.12**</td>
<td>0.16**</td>
<td>0.23**</td>
<td>0.17**</td>
<td>0.14**</td>
<td>0.38**</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(13.70)</td>
<td>(13.71)</td>
<td>(15.27)</td>
<td>(19.21)</td>
<td>(12.47)</td>
<td>(10.54)</td>
<td>(7.83)</td>
</tr>
<tr>
<td>Median House Value (natural log)</td>
<td>-0.014**</td>
<td>-0.010**</td>
<td>-0.004**</td>
<td>0.006**</td>
<td>-0.013**</td>
<td>-0.007**</td>
<td>0.030**</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(-18.49)</td>
<td>(-14.71)</td>
<td>(-5.21)</td>
<td>(6.26)</td>
<td>(-12.11)</td>
<td>(-6.73)</td>
<td>(7.58)</td>
</tr>
<tr>
<td>Democratic One-Punch Proportion</td>
<td>-0.03**</td>
<td>-0.05**</td>
<td>-0.04**</td>
<td>-0.10**</td>
<td>-0.09**</td>
<td>-0.11**</td>
<td>-0.14**</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(-5.27)</td>
<td>(-8.28)</td>
<td>(-5.10)</td>
<td>(-12.19)</td>
<td>(-10.15)</td>
<td>(-11.69)</td>
<td>(-3.40)</td>
</tr>
<tr>
<td>GOP One-Punch Proportion</td>
<td>-0.02*</td>
<td>-0.03**</td>
<td>-0.06**</td>
<td>-0.15**</td>
<td>-0.13**</td>
<td>-0.14**</td>
<td>0.01</td>
</tr>
<tr>
<td>(t-values)</td>
<td>(-2.26)</td>
<td>(-4.23)</td>
<td>(-5.90)</td>
<td>(-13.60)</td>
<td>(10.23)</td>
<td>(10.61)</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>

The dependent variable is the fraction of ballots that fail record a valid vote for each contest. Cell entries are OLS coefficients (t-values in parentheses). Data are weighted by number of ballots cast. Offices are listed in the order they appeared on the ballot (from left to right). Only competitive state legislative races are included (where each major party received at least 30% of the vote). **p<.01 (two-tailed), *p<.05 (two-tailed)
Table 5

<table>
<thead>
<tr>
<th>Variables</th>
<th>U.S. Senate</th>
<th>Governor</th>
<th>Atty. General</th>
<th>Sec. State</th>
<th>Comptroller</th>
<th>Treasurer</th>
<th>State House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.16**</td>
<td>-0.01</td>
<td>0.16**</td>
<td>0.19**</td>
<td>0.23**</td>
<td>0.10**</td>
<td>-0.15**</td>
</tr>
<tr>
<td></td>
<td>(17.49)</td>
<td>(-0.66)</td>
<td>(12.73)</td>
<td>(17.02)</td>
<td>(15.03)</td>
<td>(5.95)</td>
<td>(-2.74)</td>
</tr>
<tr>
<td>Black Residents (Proportion)</td>
<td>0.000</td>
<td>0.08**</td>
<td>0.06**</td>
<td>-0.00</td>
<td>0.03*</td>
<td>0.09**</td>
<td>0.04**</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(45.80)</td>
<td>(26.98)</td>
<td>(-0.07)</td>
<td>(12.28)</td>
<td>(30.28)</td>
<td>(4.40)</td>
</tr>
<tr>
<td>Hispanic Residents (Proportion)</td>
<td>0.05**</td>
<td>0.11**</td>
<td>0.04**</td>
<td>0.07**</td>
<td>0.11**</td>
<td>0.13**</td>
<td>0.24**</td>
</tr>
<tr>
<td></td>
<td>(16.31)</td>
<td>(29.49)</td>
<td>(9.10)</td>
<td>(15.18)</td>
<td>(17.76)</td>
<td>(21.18)</td>
<td>(15.10)</td>
</tr>
<tr>
<td>Residents 65 or Older (Proportion)</td>
<td>0.13**</td>
<td>0.17**</td>
<td>0.11**</td>
<td>0.10**</td>
<td>0.18**</td>
<td>0.22**</td>
<td>0.24**</td>
</tr>
<tr>
<td></td>
<td>(12.77)</td>
<td>(16.73)</td>
<td>(7.90)</td>
<td>(8.14)</td>
<td>(10.52)</td>
<td>(12.44)</td>
<td>(4.55)</td>
</tr>
<tr>
<td>Median House Value (natural log)</td>
<td>-0.012**</td>
<td>0.003**</td>
<td>-0.011**</td>
<td>-0.015**</td>
<td>-0.015**</td>
<td>-0.003*</td>
<td>0.020**</td>
</tr>
<tr>
<td></td>
<td>(-15.52)</td>
<td>(3.16)</td>
<td>(-10.28)</td>
<td>(-14.95)</td>
<td>(-11.09)</td>
<td>(-2.49)</td>
<td>(4.29)</td>
</tr>
<tr>
<td>Dem. One-Punch Proportion (1990)</td>
<td>0.06**</td>
<td>0.02*</td>
<td>0.07**</td>
<td>0.04**</td>
<td>0.003</td>
<td>0.02</td>
<td>0.17**</td>
</tr>
<tr>
<td></td>
<td>(8.10)</td>
<td>(2.53)</td>
<td>(7.34)</td>
<td>(4.24)</td>
<td>(0.24)</td>
<td>(1.31)</td>
<td>(4.51)</td>
</tr>
<tr>
<td>GOP One-Punch Proportion (1990)</td>
<td>0.003</td>
<td>-0.03*</td>
<td>-0.02</td>
<td>0.02</td>
<td>-0.006</td>
<td>-0.04*</td>
<td>-0.27**</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td>(-3.37)</td>
<td>(-1.62)</td>
<td>(1.49)</td>
<td>(-0.37)</td>
<td>(-2.72)</td>
<td>(-4.41)</td>
</tr>
<tr>
<td>Number of cases</td>
<td>1591</td>
<td>1578</td>
<td>1593</td>
<td>1591</td>
<td>1609</td>
<td>1585</td>
<td>960</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>.53</td>
<td>.80</td>
<td>.64</td>
<td>.40</td>
<td>.46</td>
<td>.67</td>
<td>.44</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.015</td>
<td>0.015</td>
<td>0.020</td>
<td>0.018</td>
<td>0.024</td>
<td>0.025</td>
<td>0.063</td>
</tr>
</tbody>
</table>

The dependent variable is the fraction of ballots that fail to record a vote for each contest. Cell entries are OLS coefficients (t-values in parentheses). Data are weighted by number of ballots cast. Offices are listed in the order they appeared on the ballot (from left to right). Only competitive state legislative races are included (where each major party received at least 30% of the vote).

**p<.01 (two-tailed), *p<.05 (two-tailed)