of environmental codes and regulations. Those with additional training or experience in urban planning increase their opportunities for employment in landscape architecture firms that specialize in site planning as well as landscape design. Many employers prefer to hire entry-level landscape architects who have internship experience, which significantly reduces the amount of on-the-job training required.

Earnings

In 2000, median annual earnings for landscape architects were $43,540. The middle 50 percent earned between $32,990 and $59,490. The lowest 10 percent earned less than $26,300 and the highest 10 percent earned over $74,100. Landscape and horticultural services employed more landscape architects than any other industry, and their median annual earnings were $37,820 in 2000.

In 2001, the average annual salary for all landscape architects in the Federal Government in nonsupervisory, supervisory, and managerial positions was $62,824.

Because many landscape architects work for small firms or are self-employed, benefits tend to be less generous than those provided to workers in large organizations.

Related Occupations

Landscape architects use their knowledge of design, construction, land-use planning, and environmental issues to develop a landscape project. Others whose work requires similar skills are architects, except landscape and naval; surveyors, cartographers, photogrammetrists, and surveying technicians; civil engineers; and urban and regional planners. Landscape architects also know how to grow and use plants in the landscape. Some conservation scientists and foresters and biological and medical scientists study plants in general and do related work, while environmental scientists and geoscientists work in the area of environmental remediation.

Sources of Additional Information

Additional information, including a list of colleges and universities offering accredited programs in landscape architecture, is available from:

- American Society of Landscape Architects, Career Information, 636 Eye St. NW, Washington, DC 20001. Internet: http://www.asla.org

General information on registration or licensing requirements is available from:

Surveyors, Cartographers, Photogrammetrists, and Surveying Technicians

(O*NET 17-1021.00, 17-1022.00, 17-3031.01, 17-3031.02)

Significant Points

- Four out of 5 are employed in engineering services and in government.
- Computer skills enhance employment opportunities.

Nature of the Work

Measuring and mapping the earth’s surface are the responsibilities of several different types of workers. Traditional land surveyors establish official land, air space, and water boundaries. They write descriptions of land for deeds, leases, and other legal documents; define air space for airports; and measure construction and mineral sites. Other surveyors provide data relevant to the shape, contour, location, elevation, or dimension of land or land features. Cartographers compile geographic, political, and cultural information and prepare maps of large areas. Photogrammetrists measure and analyze aerial photographs to prepare detailed maps and drawings. Surveying technicians assist land surveyors by operating surveying instruments and collecting information in the field, and by performing computations and computer-aided drafting in offices. Mapping technicians calculate mapmaking information from field notes. They also draw topographical maps and verify their accuracy.

Land surveyors manage survey parties who measure distances, directions, and angles between points and elevations of points, lines, and contours on, above, and below the earth’s surface. They plan the fieldwork, select known survey reference points, and determine the precise location of important features in the survey area. Surveyors research legal records, look for evidence of previous boundaries, and analyze the data to determine the location of boundary lines. They also record the results of the survey, verify the accuracy of data, and prepare plots, maps, and reports. Surveyors who establish boundaries must be licensed by the State in which they work, and are known as Professional Land Surveyors. Professional Land Surveyors are sometimes called to provide expert testimony in court cases concerning surveying matters.

A survey party gathers the information needed by the land surveyor. A typical survey party consists of a party chief and one or more surveying technicians and helpers. The party chief, who may be either a land surveyor or a senior surveying technician, leads day-to-day work activities. Surveying technicians assist the party chief by adjusting and operating surveying instruments, such as the theodolite (used to measure horizontal and vertical angles) and electronic distance-measuring equipment. Surveying technicians or assistants position and hold the vertical rods, or targets, that the theodolite operator sights on to measure angles, distances, or elevations. They also may hold measuring tapes, if electronic distance-measuring equipment is not used. Surveying technicians compile notes, make sketches, and enter the data obtained from surveying instruments into computers. Survey parties may include laborers or helpers who perform less-skilled duties, such as clearing brush from sight lines, driving stakes, or carrying equipment.

New technology is changing the nature of the work of surveyors and surveying technicians. For larger projects, surveyors are increasingly using the Global Positioning System (GPS), a satellite system that precisely locates points on the earth by using radio signals transmitted via satellites. To use this system, a surveyor places a satellite signal receiver—a small instrument mounted on a tripod—on a desired point. The receiver simultaneously collects information from several satellites to establish a precise position. The receiver also can be placed in a vehicle for tracing out road systems. Because receivers now come in different sizes and shapes and the cost of the receivers has fallen, much more surveying work is being done using GPS. Surveyors then must interpret and check the results produced by the new technology.

Cartographers measure, map, and chart the earth’s surface, which involves everything from geographical research and data compilation to actual map production. They collect, analyze, and interpret both spatial data—such as latitude, longitude, elevation, and distance—and nonspatial data—such as population density, land use patterns, annual precipitation levels, and demographic characteristics. Cartographers prepare maps in either digital or graphic form, using information provided by geodetic surveys, aerial photographs, and satellite data. Photogrammetrists prepare detailed maps and drawings from aerial photographs, usually of areas that are inaccessible, difficult, or less cost-efficient to survey by other methods.
Map editors develop and verify map contents from aerial photographs and other reference sources. Some States require photogrammetrists to be licensed as Professional Land Surveyors. Some surveyors perform specialized functions that are closer to those of a cartographer than to those of a traditional surveyor. For example, geodetic surveyors use high-accuracy techniques, including satellite observations (remote sensing), to measure large areas of the earth’s surface. Geophysical prospecting surveyors mark sites for subsurface exploration, usually petroleum related. Marine or hydrographic surveyors survey harbors, rivers, and other bodies of water to determine shorelines, topography of the bottom, water depth, and other features.

The work of surveyors and cartographers is changing because of advancements in technology. These advancements include not only the GPS, but also new earth resources data satellites, improved aerial photography, and geographic information systems (GIS)—which are computerized data banks of spatial data. From the older specialties of photogrammetrist and cartographer, a new type of mapping scientist is emerging. The geographic information specialist combines the functions of mapping science and surveying into a broader field concerned with the collection and analysis of geographic information.

Working Conditions
Surveyors usually work an 8-hour day, 5 days a week, and may spend a lot of time outdoors. Sometimes they work longer hours during the summer, when weather and light conditions are most suitable for fieldwork. Seasonal demands for longer hours are related to demand for specific surveying services. Home purchases are traditionally related to the start and end of the school year; construction is related to the materials to be used (concrete and asphalt are restricted by outside temperatures, unlike wood framing); and aerial photography is most effective when the leaves are off the trees.

Land surveyors and technicians engage in active, and sometimes strenuous, work. They often stand for long periods, walk considerable distances, and climb hills with heavy packs of instruments and other equipment. They can also be exposed to all types of weather. Traveling often is part of the job; they may commute long distances, stay overnight, or temporarily relocate near a survey site.

While surveyors can spend considerable time indoors planning surveys, analyzing data, and preparing reports and maps, cartographers spend virtually all of their time in offices and seldom visit the sites they are mapping.

Employment
Surveyors, cartographers, photogrammetrists, and surveying technicians held about 121,000 jobs in 2000. Engineering and architectural services firms employed about 63 percent of these workers. Federal, State, and local governmental agencies employed an additional 16 percent. Major Federal Government employers are the U.S. Geological Survey (USGS), the Bureau of Land Management (BLM), the Army Corps of Engineers, the Forest Service (USFS), the National Oceanic and Atmospheric Administration (NOAA), the National Imagery and Mapping Agency (NIMA), and the Federal Emergency Management Agency (FEMA). Most surveyors in State and local government work for highway departments and urban planning and redevelopment agencies. Construction firms, mining and oil and gas extraction companies, and public utilities also employ surveyors, cartographers, photogrammetrists, and surveying technicians. About 5,000 were self-employed in 2000.

Training, Other Qualifications, and Advancement
Most people prepare for a career as a licensed surveyor by combining postsecondary school courses in surveying with extensive on-the-job training. However, as technology advances, a 4-year college degree is becoming more of a prerequisite. About 25 universities now offer 4-year programs leading to a B.S. degree in surveying. Junior and community colleges, technical institutes, and vocational schools offer 1-, 2-, and 3-year programs in both surveying and surveying technology.

All 50 States and all U.S. territories (Puerto Rico, Guam, Mariana Islands, and Virgin Islands) license land surveyors. For licensure, most State licensing boards require that individuals pass a written examination given by the National Council of Examiners for Engineering and Surveying. Most States also require that surveyors pass a written examination prepared by the State licensing board. In addition, they must meet varying standards of formal education and work experience in the field. In the past, many individuals started as members of survey crews and worked their way up to become licensed surveyors with little formal training in surveying. However, because of advancing technology and rising licensing standards, formal education requirements are increasing. At present, most States require some formal post-high school coursework and 10 to 12 years of surveying experience to gain licensure. However, requirements vary among States. Generally, the quickest route to licensure is a combination of 4 years of college, 2 to 4 years of experience (a few States do not require any), and passing the licensing examinations. An increasing number of States require a bachelor’s degree in surveying or in a closely related field, such as civil engineering or forestry (with courses in surveying), regardless of the number of years of experience.

High school students interested in surveying should take courses in algebra, geometry, trigonometry, drafting, mechanical drawing, and computer science. High school graduates with no formal training in surveying usually start as apprentices. Beginners with postsecondary school training in surveying usually can start as technicians or assistants. With on-the-job experience and formal training in surveying—either in an institutional program or from a correspondence school—workers may advance to senior survey technician, then to party chief, and in some cases, to licensed surveyor (depending on State licensing requirements).
The National Society of Professional Surveyors, a member organization of the American Congress on Surveying and Mapping, has a voluntary certification program for surveying technicians. Technicians are certified at four levels requiring progressive amounts of experience, in addition to the passing of written examinations. Although not required for State licensure, many employers require certification for promotion to positions with greater responsibilities.

Surveyors should have the ability to visualize objects, distances, sizes, and abstract forms. They must work with precision and accuracy because mistakes can be costly. Members of a survey party must be in good physical condition because they work outdoors and often carry equipment over difficult terrain. They need good eyesight, coordination, and hearing to communicate verbally and manually (using hand signals). Surveying is a cooperative process, so good interpersonal skills and the ability to work as part of a team are important. Good office skills are also essential. Surveyors must be able to research old deeds and other legal documents and prepare reports that document their work.

Cartographers and photogrammetrists usually have a bachelor’s degree in a field such as engineering, forestry, geography, or a physical science. Although it is possible to enter these positions through previous experience as a photogrammetric or cartographic technician, most cartographic and photogrammetric technicians now have had some specialized postsecondary school training. With the development of GIS, cartographers and photogrammetrists need additional education and stronger technical skills—including more experience with computers—than in the past.

The American Society for Photogrammetry and Remote Sensing has a voluntary certification program for photogrammetrists. To qualify for this professional distinction, individuals must meet work experience standards and pass an oral or written examination.

Job Outlook

Overall employment of surveyors, cartographers, photogrammetrists, and surveying technicians is expected to grow about as fast as the average for all occupations through the year 2010. The widespread availability and use of advanced technologies, such as GPS, GIS, and remote sensing, are increasing both the accuracy and productivity of survey, photogrammetric, and mapping work. However, job openings will continue to result from the need to replace workers who transfer to other occupations or leave the labor force altogether.

 Prospects will be best for surveying and mapping technicians, whose numbers are expected to grow slightly faster than the average for all occupations through 2010. The short training period needed to learn to operate the equipment, the current lack of any formal testing or licensing, and the relatively lower wages all make for a healthy demand for these technicians, as well as for a readily available supply.

As technologies become more complex, opportunities will be best for surveyors, cartographers, and photogrammetrists who have at least a bachelor’s degree and strong technical skills. Increasing demand for geographic data, as opposed to traditional surveying services, will mean better opportunities for cartographers and photogrammetrists involved in the development and use of geographic and land information systems. New technologies, such as GPS and GIS, also may enhance employment opportunities for surveyors and surveying technicians who have the educational background enabling them to use these systems, but upgraded licensing requirements will continue to limit opportunities for professional advancement for those with less education.

Opportunities for surveyors, cartographers, and photogrammetrists should remain concentrated in engineering, architectural, and surveying services firms. However, nontraditional areas such as urban planning and natural resource exploration and mapping also should provide areas of employment growth, particularly with regard to producing maps for management of natural emergencies and updating maps with the newly available technology. Continued growth in construction through 2010 should require surveyors to lay out streets, shopping centers, housing developments, factories, office buildings, and recreation areas, while setting aside flood plains, wetlands, wildlife habitats and environmentally sensitive areas for protection. However, employment may fluctuate from year to year along with construction activity, or mapping needs for land and resource management.

Earnings

Median annual earnings of surveyors were $36,700 in 2000. The middle 50 percent earned between $26,480 and $49,030. The lowest 10 percent earned less than $19,570, and the highest 10 percent earned more than $62,980.

Median annual earnings of cartographers and photogrammetrists were $39,410 in 2000. The middle 50 percent earned between $29,200 and $51,930. The lowest 10 percent earned less than $23,560 and the highest 10 percent earned more than $64,780.

Median hourly earnings of surveying and mapping technicians were $13.48 in 2000. The middle 50 percent of all surveying technicians earned between $10.46 and $17.81 in 2000. The lowest 10 percent earned less than $8.45, and the highest 10 percent earned more than $22.40. Median hourly earnings of surveying and mapping technicians employed in engineering and architectural services were $12.39 in 2000, while those employed by local governments had median hourly earnings of $15.77.

In 2001, land surveyors in nonsupervisory, supervisory, and managerial positions in the Federal Government earned an average salary of $57,416; cartographers, $62,369; geodetic technicians, $53,143; surveying technicians, $34,623; and cartographic technicians, $40,775.

Related Occupations

Surveying is related to the work of civil engineers, architects, and landscape architects, because an accurate survey is the first step in land development and construction projects. Cartography and geodetic surveying are related to the work of environmental scientists and geoscientists, who study the earth’s internal composition, surface, and atmosphere. Cartography also is related to the work of geographers and urban and regional planners, who study and decide how the earth’s surface is to be used.

Sources of Additional Information

Information about career opportunities, licensure requirements, and the surveying technician certification program is available from:

- National Society of Professional Surveyors, Suite #403, 6 Montgomery Village Ave., Gaithersburg, MD 20879. Internet: http://www.acsm.net/nsps/index.html
- American Association of Geodetic Surveying (AAGS), Suite #403, 6 Montgomery Village Ave., Gaithersburg, MD 20879. Internet: http://www.acsm.net
- General information on careers in photogrammetry and remote sensing is available from: