TORI ARE ELLIPTIC CURVES

ASHLEY NEAL

Lattice
Let w1, ws be complex numbers that are linearly independent over R. Then
L = Zw + Zwy = {niw1 + nows | n1,n2 € Z}
is called a lattice, and C/L is a torus.
Fundamental Parallelogram
The set
F={ajw +aws |0<a;<1,i=1,2}
is called a fundamental parallelogram for L.
Doubly Periodic Function
A doubly periodic function is a meromorphic function

f:C—CUx

such that
fz+w)=1(2)
for all z € C and all w € L, where L is a lattice.
Divisor of a Function
If f is a not identically zero meromorphic function and w € C, then we can write

f(2) = ar(z = w)" + apsr (z —w)

with a, # 0. The residue of f at w is r = ord,, f, which can be positive, negative, or zero. The
divisor of a function f is defined as

div(f) = Z(ordwf)[w]
weF

where F' is the fundamental parallelogram for L.

Theorem 9.1. Let f be a doubly periodic function for the lattice L and let F be a fundamental
parallelogram for L.
1. If f has no poles, then f is constant.

2. > wer Resyf =0
3. If f is not identically 0,

deg(div(f)) = Z ord, f =0
weF
4. If f is not identically 0,
Z w-ordy,f € L

weF

5. If f is not constant, then f : C — C U oo is surjective. If n is the sum of the orders of the
poles of f in F and zy € C, then f(z) = zo has n solutions (counting multiplicities).
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6. If f has only one pole in F, then this pole cannot be a simple pole.
All of the above sums over w € F have only finitely many nonzero terms.

Theorem 9.3. Given a lattice L, define the Weirstrass p-function by
1 1 1
oo =sn=5+ ¥ (oo o)

Then

1. The sum defining p(z) converses absolutely and uniformly on compact sets not containing ele-
ments of L.

2. p(z) is meromorphic in C and has a double pole at each w € L.

3. p(—z) = p(z) for all z € C.

4. p(z+w) = p(2) for allw € L.

5. The set of doubly periodic functions for L is C(p,¢’). In other words, every doubly periodic
function is a rational function of o and its derivative ¢'.

Eisenstein Series
Let L be a lattice. For integers k > 3, define the Eisenstein series

Gr = Gg(L) = Z wF

weL, w#0

The sum converses. When k is odd, the terms for w and —w cancel, so G, = 0.

Proposition 9.7. For 0 < |z| < mino¢w€L(\w|)
+ Z 25 + 1)Gaj22%.
7j=1
Proof. By definition,

-t 3 (He3)

weL, w#0
When |z] < |w],

We know

for | 2] < 1. Differentiation both sides we get

(1_5&)2 -3 (1) ater - ini:

n=0
Therefore,

o0 Zn
ann p=) (n+)—
n=1 n=0

So

) 00 n

(1_12)2—1—<Z(n+1)>—1—<1+2n+1 >—1—Z(n+1);n.

n=0 n=1
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Then

1 e " 1 = 2"
W=k ¥ Serniote 3 Seen s
wel, w#0 n=1 weL,w#0n=1

Switching the order of the summations an factoring out constants yields
R R
_ = n —(n+2) _ n
0(2) =2 + Z(n +1)z Z w o + Z(n +1)2"Gpo.
n=1 w#0,weL n=1
Since when k is odd, G = 0, we can let n = 27, so

[ ,
pz) = 5+ > 2k + 1)z G 0.
j=1

Theorem 9.8. Let p(z) be the Weierstrass @-function for a lattice L. Then,
0 (2)? = 4p(2)® — 60G4p(2) — 140Gs.
Proof. From Proposition 9.7, we know
o(2) = 272 4+ 3G422 + 5Gezt + - - .

Differentiating, we get
¢ (2) = =227 + 6G4z + 20G62> + - - .

So
0(2)3 =275 4+9G4272 +15G6 + - - -
and
@ (2)? =427 -24G4272 —80Gs + - - - .
Let

f(2) = ¢'(2)? = 4p(2)® + 60G4p(2) + 140Gy
= (4275-24G4272—80Gs+ - - )+ (=427 —36G 4272 —60G6+- - - )+(60G 42~ 2+180G42°+300G 62+ - - )+(140Gs)
=02 0402240412+ 2%+ -

Therefore f(z) is a power series with no constant term and no negative powers of z. The only
possible poles of f(z) are the poles of p(z) and ©'(z), which are each w € L. f(z) has no pole at
0. By 9.3, f(z) is doubly periodic, so 0 € L = f(w) = f(0) for all w € L. Therefore f(z) has
no poles. By theorem 9.1, f(z) is constant. Since f(z) has no constant term, f(0) = 0. Therefore
f(2) is identically 0. Hence,

0 (2)? = 4p(2)® — 60G4p(z) — 140Gs.

Setting go = 60G4 and g3 = 140G gives
¢'(2)° = 4p(2)° — 920(2) — g3,
therefore, (p(z), ©'(z)) lie on the curve
y? = 4a® — gox — g3.
Proposition 9.9. A #0



Proof. A\ = 16(g3 — 27g%) so we need to show g5 — 27¢3 # 0. ¢/(2) is doubly periodic and w; € L,

so letting z = —%' gives
& 9 & it & 5 )"

Y- 3)

Since p'(—z) = —¢'(2),
Therefore,

Since ¢'(2)? = 4p(2)* — gap(2) — g3 we see (%) is a root of 4z — gox — g3. If we can show the 3
roots are distinct, then A # 0. Let
Wi

).

Then

and hi(z) = ¢/(z) implies

n(3)=v(3) =0
Therefore h; vanishes to order at least 2 at %, so % is a double root of h;. But by 9.1 (5), h; only

has 2 zeros counting multiplicities (since h;(z) only has a double pole at z = 0). Thus % is the
only zero of h;(z). So
. ﬂ)
hi () #0

when j # i. Therefore p(%}) are distinct. O

The proposition implies E : y?> = 4a® — gox — g3 is the equation of an elliptic curve. Since
p(2), 9 (z) depend only on z mod L, we have a function from C/L to E(C).

Theorem 9.10. Let L be a lattice and let E be the elliptic curve y?> = 43 — gox — g3. The map
¢:C/L — E(C)

z— (p(2),9'(2))
00— o0

s an isomorphism of groups.

Proof. To show ® is an isomorphism of groups, we must show it is (1) onto, (2) one to one, and a
(3) homomorphism.

(1) We will start by showing ® is onto. Let (z,y) € E(C). Then p(z) — « has a double pole by
by 9.3 (2), and therefore has zeros by 9.1 (5). So there exists z € C such that p(z) = z. Since
(x,9) € BE(C) and y? = 423 — gox — go, by 9.8,

¢'(2)" = 40(2)° — gap(2) — g3 = 42” — gax — g5 = ¢
Therefore y? = ¢'(2)?, so ¢'(z) = +y. If ¢/(2) = y, then there exist z such that (x,y) =
(p(2),9'(2)), s0 z — (z,y). If P/(2) = —y, then p(—2) = p(z) = x since p is even and p/'(—z) =
—p(z) = —(—y) = y since ¢’ is odd. Therefore, there exists z such that (z,y) = (p(—=2), p'(—2)),
so —z — (z,y).

(2) Next we will show @ is one to one. Assume (p(21),¢'(21)) = (p(22), ©'(22)) for z1, 29 € C.
Then p(21), p(22) and ¢'(21) = p’(22). p(z) only has poles at z € L. Therefore, if z; is a pole of p,
then z; € L and 20 € L, so 21 = zo mod L.
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Now assume z; is not a pole of p, so z; ¢ L. Consider the function

h(z) = p(z) — p(z1).
It has a double pole at z = 0 and no other poles in F' (the fundamental parallelogram). Therefore
h(z) has exactly 2 zeros by 9.1 (5).

Suppose z; = % for some i. Since (%) = 0 for i = 1,2,3 by the proof of 9.9, so ©'(21) =
@' (%) = 0 implies 2; is a double root of h(z). Therefore z; is the only root. 0 = go(zl) = p(29)
implies zo is a root, therefore z; = 25.

Finally suppose z1 is not of the form %:. We see that h(—z1) = p(—=21)—p(2
because p is even and h(z1) = p(z1) — p(21) = 0. Since h(—z1) = h(z1) =
mod L, the two zeros of h are z; and —z; mod L. But h(z2) = p(22) — p(z
1mphes that z9 = —21; mod L which means

y=¢'(2)=¢(-n)=—¢'(x1) = -v.
So ¢'(z1) =y = 0. But p(z) only has a triple pole, so it only has 3 zeros in F. From the proof of
9.9 we know these zeros occur at <. Since z; is not of the form %, this is a contradiction. Hence
in all cases 21 = 20 mod L and ® i 1s injective.

(3) We will now show that ® is a group homomorphism. Let 21,22 € C and let
First we will only worry about when P, P» are finite and the line through P;, P, intersects F in 3
distinct finite points (this means that Py # +Ps, that 2P + P # oo, and that P, + 2P, # c0). For
a fixed z1, this excludes only finitely many values of zs.

Let y = az + b be the line though P, P». Let P35 be the third point of intersection of this line
with E and let P3 = ®(z3) with 23 € C. Then consider

() = () - p(z) = b.
¢(z) has zeros at the intersection points of the line y = ax + b and E. Therefore, ¢(z) has zeros

at z1,29,23. Since £(z) has a triple pole at 0, and no other poles, it has 3 zeros in F by 9.1(5).
Therefore,

1) = p(z1)—p(21) =0
0) and since z1 Z —21

p(z1) —p(z1) =0

div(0) = [z1] + [z2] + [23] — 3[0].
Then by 9.1(4), 21 + 22 + 23 € L. So
P(21 + 22) = p(21 + 22 + 23 — 23) = P((21 + 22 + 23) + (—23)) = P(—23) = P(23)

since g is doubly periodic and even. Also,

Oz +22) =0 (1 +22+23—23) =0 (21 + 22+ 23) + (=23)) = ¢ (—23) = —¢/(23)
since p is doubly periodic and odd. Then
D(z1 + 22) = (p(21 + 22), ' (21 + 22)) = (p(23), —¢'(23)) = —P3 = P1 + P2 = ®(21) + D(22).

Therefore ® is a group homomorphism. Although we excluded certain values of z;, continuity
ensures that this holds for all values of z;.

The cases involving infinity are easily verified. Then we will consider the case when P, = P» and
y1 # 0.

Let y = az + b be the line tangent to E at P;. Let P3 be the other point of intersection of this
line with E and let P3 = ®(z3) with z3 € C. Then

U(z) = ¢'(2) — p(z) = b.
has zeros at z1, z3 and z; has order 2 since y = az + b is the line tangent to E at P;. £(z) still has
3 zeros in F. Therefore,
div(l) = 2[z1] + [z3] — 3[0].
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Then by 9.1(4), 221 + 23 € L. So

0(221) = (221 + 23 — 23) = p(—23) = P(23)
and
©'(221) = /(221 + 23 — 23) = ' (—23) = —¢'(23).
Then

D(z1 + 21) = (p(221), 9'(221)) = (p(23), —¢'(23)) = —P3 = PL + Pr = ®(21) + (1)
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