
TORI ARE ELLIPTIC CURVES

ASHLEY NEAL

Lattice

Let ω1, ω2 be complex numbers that are linearly independent over R. Then

L = Zω1 + Zω2 = {n1ω1 + n2ω2 | n1, n2 ∈ Z}
is called a lattice, and C/L is a torus.

Fundamental Parallelogram

The set

F = {a1ω1 + a2ω2 | 0 ≤ ai < 1, i = 1, 2}
is called a fundamental parallelogram for L.

Doubly Periodic Function

A doubly periodic function is a meromorphic function

f : C −→ C ∪∞
such that

f(z + ω) = f(z)

for all z ∈ C and all ω ∈ L, where L is a lattice.

Divisor of a Function

If f is a not identically zero meromorphic function and ω ∈ C, then we can write

f(z) = ar(z − w)r + ar+1(z − w)r+1 + · · · ,
with ar 6= 0. The residue of f at w is r = ordwf , which can be positive, negative, or zero. The
divisor of a function f is defined as

div(f) =
∑
w∈F

(ordwf)[w]

where F is the fundamental parallelogram for L.

Theorem 9.1. Let f be a doubly periodic function for the lattice L and let F be a fundamental
parallelogram for L.
1. If f has no poles, then f is constant.
2.
∑

w∈F Reswf = 0
3. If f is not identically 0,

deg(div(f)) =
∑
w∈F

ordwf = 0

4. If f is not identically 0, ∑
w∈F

w · ordwf ∈ L

5. If f is not constant, then f : C −→ C ∪ ∞ is surjective. If n is the sum of the orders of the
poles of f in F and z0 ∈ C, then f(z) = z0 has n solutions (counting multiplicities).
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6. If f has only one pole in F , then this pole cannot be a simple pole.
All of the above sums over w ∈ F have only finitely many nonzero terms.

Theorem 9.3. Given a lattice L, define the Weirstrass ℘-function by

℘(z) = ℘(z;L) =
1

z2
+

∑
ω∈L, ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

Then
1. The sum defining ℘(z) converses absolutely and uniformly on compact sets not containing ele-
ments of L.
2. ℘(z) is meromorphic in C and has a double pole at each ω ∈ L.
3. ℘(−z) = ℘(z) for all z ∈ C.
4. ℘(z + ω) = ℘(z) for all ω ∈ L.
5. The set of doubly periodic functions for L is C(℘, ℘′). In other words, every doubly periodic
function is a rational function of ℘ and its derivative ℘′.

Eisenstein Series

Let L be a lattice. For integers k ≥ 3, define the Eisenstein series

Gk = Gk(L) =
∑

ω∈L, ω 6=0

ω−k.

The sum converses. When k is odd, the terms for ω and −ω cancel, so Gk = 0.

Proposition 9.7. For 0 < |z| < min06=ω∈L(|ω|),

℘(z) =
1

z2
+
∞∑
j=1

(2j + 1)G2j+2z
2j .

Proof. By definition,

℘(z) =
1

z2
+

∑
ω∈L, ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

When |z| < |ω|,
1

(z − ω)2
− 1

ω2
= ω−2

(
1

(1− z
ω )2
− 1

)
.

We know
1

1− z
ω

=
∞∑
n=0

( z
ω

)n
for | zω | < 1. Differentiation both sides we get

1
ω

(1− z
ω )2

=

∞∑
n=0

(
1

ω

)n

n(z)n−1 =

∞∑
n=1

n
zn−1

ωn
.

Therefore,

1

(1− z
ω )2

=

∞∑
n=1

n
zn−1

ωn−1 =

∞∑
n=0

(n + 1)
zn

ωn
.

So

1

(1− z
ω )2
− 1 =

( ∞∑
n=0

(n + 1)
zn

ωn

)
− 1 =

(
1 +

∞∑
n=1

(n + 1)
zn

ωn

)
− 1 =

∞∑
n=1

(n + 1)
zn

ωn
.
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Then

℘(z) =
1

z2
+

∑
ω∈L, ω 6=0

ω−2
∞∑
n=1

(n + 1)
zn

ωn
=

1

z2
+

∑
ω∈L,ω 6=0

∞∑
n=1

(n + 1)
zn

ωn+2
.

Switching the order of the summations an factoring out constants yields

℘(z) =
1

z2
+

∞∑
n=1

(n + 1)zn
∑

ω 6=0,ω∈L
ω−(n+2) =

1

z2
+

∞∑
n=1

(n + 1)znGn+2.

Since when k is odd, Gk = 0, we can let n = 2j, so

℘(z) =
1

z2
+

∞∑
j=1

(2k + 1)z2jG2j+2.

�

Theorem 9.8. Let ℘(z) be the Weierstrass ℘-function for a lattice L. Then,

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

Proof. From Proposition 9.7, we know

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + · · · .

Differentiating, we get

℘′(z) = −2z−3 + 6G4z + 20G6z
3 + · · · .

So

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · ·

and

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · .

Let

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

= (4z−6−24G4z
−2−80G6+· · · )+(−4z−6−36G4z

−2−60G6+· · · )+(60G4z
−2+180G4z

2+300G6z
4+· · · )+(140G6)

= 0z−6 + 0z−2 + 0 + c1z + c2z
2 + · · ·

Therefore f(z) is a power series with no constant term and no negative powers of z. The only
possible poles of f(z) are the poles of ℘(z) and ℘′(z), which are each ω ∈ L. f(z) has no pole at
0. By 9.3, f(z) is doubly periodic, so 0 ∈ L =⇒ f(ω) = f(0) for all ω ∈ L. Therefore f(z) has
no poles. By theorem 9.1, f(z) is constant. Since f(z) has no constant term, f(0) = 0. Therefore
f(z) is identically 0. Hence,

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

�

Setting g2 = 60G4 and g3 = 140G6 gives

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

therefore, (℘(z), ℘′(z)) lie on the curve

y2 = 4x3 − g2x− g3.

Proposition 9.9. 4 6= 0
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Proof. 4 = 16(g32 − 27g23) so we need to show g32 − 27g23 6= 0. ℘′(z) is doubly periodic and wi ∈ L,
so letting z = −ωi

2 gives

℘′
(ωi

2

)
= ℘′

(
wi −

ωi

2

)
= ℘

(
−ωi

2

)
.

Since ℘′(−z) = −℘′(z),

℘′
(ωi

2

)
= ℘

(
−ωi

2

)
= −℘′

(ωi

2

)
.

Therefore,

℘′
(ωi

2

)
= 0, i = 1, 2, 3.

Since ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 we see ℘′(ωi
2 ) is a root of 4x3 − g2x− g3. If we can show the 3

roots are distinct, then 4 6= 0. Let

hi(z) = ℘(z)− ℘(
ωi

2
).

Then

hi

(ωi

2

)
= ℘

(ωi

2

)
− ℘

(ωi

2

)
= 0

and h′i(z) = ℘′(z) implies

h′i

(ωi

2

)
= ℘′

(ωi

2

)
= 0.

Therefore hi vanishes to order at least 2 at ωi
2 , so ωi

2 is a double root of hi. But by 9.1 (5), hi only
has 2 zeros counting multiplicities (since hi(z) only has a double pole at z = 0). Thus ωi

2 is the
only zero of hi(z). So

hi

(ωj

2

)
6= 0

when j 6= i. Therefore ℘(ωi
2 ) are distinct. �

The proposition implies E : y2 = 4x3 − g2x − g3 is the equation of an elliptic curve. Since
℘(z), ℘′(z) depend only on z mod L, we have a function from C/L to E(C).

Theorem 9.10. Let L be a lattice and let E be the elliptic curve y2 = 4x3 − g2x− g3. The map

Φ : C/L −→ E(C)

z 7−→ (℘(z), ℘′(z))

0 7−→ ∞
is an isomorphism of groups.

Proof. To show Φ is an isomorphism of groups, we must show it is (1) onto, (2) one to one, and a
(3) homomorphism.

(1) We will start by showing Φ is onto. Let (x, y) ∈ E(C). Then ℘(z)− x has a double pole by
by 9.3 (2), and therefore has zeros by 9.1 (5). So there exists z ∈ C such that ℘(z) = x. Since
(x, y) ∈ E(C) and y2 = 4x3 − g2x− g2, by 9.8,

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 = 4x3 − g2x− g3 = y2.

Therefore y2 = ℘′(z)2, so ℘′(z) = ±y. If ℘′(z) = y, then there exist z such that (x, y) =
(℘(z), ℘′(z)), so z 7−→ (x, y). If ℘′(z) = −y, then ℘(−z) = ℘(z) = x since ℘ is even and ℘′(−z) =
−℘(z) = −(−y) = y since ℘′ is odd. Therefore, there exists z such that (x, y) = (℘(−z), ℘′(−z)),
so −z 7−→ (x, y).

(2) Next we will show Φ is one to one. Assume (℘(z1), ℘
′(z1)) = (℘(z2), ℘

′(z2)) for z1, z2 ∈ C.
Then ℘(z1), ℘(z2) and ℘′(z1) = ℘′(z2). ℘(z) only has poles at z ∈ L. Therefore, if z1 is a pole of p,
then z1 ∈ L and z2 ∈ L, so z1 ≡ z2 mod L.

4



Now assume z1 is not a pole of ℘, so z1 /∈ L. Consider the function

h(z) = ℘(z)− ℘(z1).

It has a double pole at z = 0 and no other poles in F (the fundamental parallelogram). Therefore
h(z) has exactly 2 zeros by 9.1 (5).

Suppose z1 = ωi
2 for some i. Since ℘′(ωi

2 ) = 0 for i = 1, 2, 3 by the proof of 9.9, so ℘′(z1) =
℘′(ωi

2 ) = 0 implies z1 is a double root of h(z). Therefore z1 is the only root. 0 = ℘(z1) = ℘(z2)
implies z2 is a root, therefore z1 = z2.

Finally suppose z1 is not of the form ωi
2 . We see that h(−z1) = ℘(−z1)−℘(z1) = ℘(z1)−℘(z1) = 0

because ℘ is even and h(z1) = ℘(z1) − ℘(z1) = 0. Since h(−z1) = h(z1) = 0, and since z1 6≡ −z1
mod L, the two zeros of h are z1 and −z1 mod L. But h(z2) = ℘(z2)− ℘(z1) = ℘(z1)− ℘(z1) = 0
implies that z2 ≡ −z1 mod L which means

y = ℘′(z2) = ℘′(−z1) = −℘′(z1) = −y.
So ℘′(z1) = y = 0. But ℘(z) only has a triple pole, so it only has 3 zeros in F . From the proof of
9.9 we know these zeros occur at ωi

2 . Since z1 is not of the form ωi
2 , this is a contradiction. Hence

in all cases z1 ≡ z2 mod L and Φ is injective.
(3) We will now show that Φ is a group homomorphism. Let z1, z2 ∈ C and let

Φ(zi) = Pi.

First we will only worry about when P1, P2 are finite and the line through P1, P2 intersects E in 3
distinct finite points (this means that P1 6= ±P2, that 2P1 +P2 6=∞, and that P1 + 2P2 6=∞). For
a fixed z1, this excludes only finitely many values of z2.

Let y = ax + b be the line though P1, P2. Let P3 be the third point of intersection of this line
with E and let P3 = Φ(z3) with z3 ∈ C. Then consider

`(z) = ℘′(z)− ℘(z)− b.

`(z) has zeros at the intersection points of the line y = ax + b and E. Therefore, `(z) has zeros
at z1, z2, z3. Since `(z) has a triple pole at 0, and no other poles, it has 3 zeros in F by 9.1(5).
Therefore,

div(`) = [z1] + [z2] + [z3]− 3[0].

Then by 9.1(4), z1 + z2 + z3 ∈ L. So

℘(z1 + z2) = ℘(z1 + z2 + z3 − z3) = ℘((z1 + z2 + z3) + (−z3)) = ℘(−z3) = ℘(z3)

since ℘ is doubly periodic and even. Also,

℘′(z1 + z2) = ℘′(z1 + z2 + z3 − z3) = ℘′((z1 + z2 + z3) + (−z3)) = ℘′(−z3) = −℘′(z3)
since ℘ is doubly periodic and odd. Then

Φ(z1 + z2) = (℘(z1 + z2), ℘
′(z1 + z2)) = (℘(z3),−℘′(z3)) = −P3 = P1 + P2 = Φ(z1) + Φ(z2).

Therefore Φ is a group homomorphism. Although we excluded certain values of zi, continuity
ensures that this holds for all values of zi.

The cases involving infinity are easily verified. Then we will consider the case when P1 = P2 and
y1 6= 0.

Let y = ax + b be the line tangent to E at P1. Let P3 be the other point of intersection of this
line with E and let P3 = Φ(z3) with z3 ∈ C. Then

`(z) = ℘′(z)− ℘(z)− b.

has zeros at z1, z3 and z1 has order 2 since y = ax + b is the line tangent to E at P1. `(z) still has
3 zeros in F. Therefore,

div(`) = 2[z1] + [z3]− 3[0].
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Then by 9.1(4), 2z1 + z3 ∈ L. So

℘(2z1) = ℘(2z1 + z3 − z3) = ℘(−z3) = ℘(z3)

and
℘′(2z1) = ℘′(2z1 + z3 − z3) = ℘′(−z3) = −℘′(z3).

Then

Φ(z1 + z1) = (℘(2z1), ℘
′(2z1)) = (℘(z3),−℘′(z3)) = −P3 = P1 + P1 = Φ(z1) + Φ(z1).

�
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