TORI ARE ELLIPTIC CURVES

ASHLEY NEAL

Lattice

Let ω_{1}, ω_{2} be complex numbers that are linearly independent over \mathbb{R}. Then

$$
L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

is called a lattice, and C / L is a torus.

Fundamental Parallelogram

The set

$$
F=\left\{a_{1} \omega_{1}+a_{2} \omega_{2} \mid 0 \leq a_{i}<1, i=1,2\right\}
$$

is called a fundamental parallelogram for L.
Doubly Periodic Function
A doubly periodic function is a meromorphic function

$$
f: \mathbb{C} \longrightarrow \mathbb{C} \cup \infty
$$

such that

$$
f(z+\omega)=f(z)
$$

for all $z \in \mathbb{C}$ and all $\omega \in L$, where L is a lattice.

Divisor of a Function

If f is a not identically zero meromorphic function and $\omega \in \mathbb{C}$, then we can write

$$
f(z)=a_{r}(z-w)^{r}+a_{r+1}(z-w)^{r+1}+\cdots,
$$

with $a_{r} \neq 0$. The residue of f at w is $r=\operatorname{ord}_{w} f$, which can be positive, negative, or zero. The divisor of a function f is defined as

$$
\operatorname{div}(f)=\sum_{w \in F}\left(\operatorname{ord}_{w} f\right)[w]
$$

where F is the fundamental parallelogram for L.
Theorem 9.1. Let f be a doubly periodic function for the lattice L and let F be a fundamental parallelogram for L.

1. If f has no poles, then f is constant.
2. $\sum_{w \in F} \operatorname{Res}_{w} f=0$
3. If f is not identically 0 ,

$$
\operatorname{deg}(\operatorname{div}(f))=\sum_{w \in F} \operatorname{ord}_{w} f=0
$$

4. If f is not identically 0 ,

$$
\sum_{w \in F} w \cdot \operatorname{ord}_{w} f \in L
$$

5. If f is not constant, then $f: \mathbb{C} \longrightarrow \mathbb{C} \cup \infty$ is surjective. If n is the sum of the orders of the poles of f in F and $z_{0} \in \mathbb{C}$, then $f(z)=z_{0}$ has n solutions (counting multiplicities).
6. If f has only one pole in F, then this pole cannot be a simple pole.

All of the above sums over $w \in F$ have only finitely many nonzero terms.
Theorem 9.3. Given a lattice L, define the Weirstrass \wp-function by

$$
\wp(z)=\wp(z ; L)=\frac{1}{z^{2}}+\sum_{\omega \in L, \omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

Then

1. The sum defining $\wp(z)$ converses absolutely and uniformly on compact sets not containing elements of L.
2. $\wp(z)$ is meromorphic in \mathbb{C} and has a double pole at each $\omega \in L$.
3. $\wp(-z)=\wp(z)$ for all $z \in \mathbb{C}$.
4. $\wp(z+\omega)=\wp(z)$ for all $\omega \in L$.
5. The set of doubly periodic functions for L is $\mathbb{C}\left(\wp, \wp^{\prime}\right)$. In other words, every doubly periodic function is a rational function of \wp and its derivative \wp^{\prime}.

Eisenstein Series

Let L be a lattice. For integers $k \geq 3$, define the Eisenstein series

$$
G_{k}=G_{k}(L)=\sum_{\omega \in L, \omega \neq 0} \omega^{-k} .
$$

The sum converses. When k is odd, the terms for ω and $-\omega$ cancel, so $G_{k}=0$.
Proposition 9.7. For $0<|z|<\min _{0 \neq \omega \in L}(|\omega|)$,

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{j=1}^{\infty}(2 j+1) G_{2 j+2} z^{2 j} .
$$

Proof. By definition,

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in L, \omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

When $|z|<|\omega|$,

$$
\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}=\omega^{-2}\left(\frac{1}{\left(1-\frac{z}{\omega}\right)^{2}}-1\right) .
$$

We know

$$
\frac{1}{1-\frac{z}{\omega}}=\sum_{n=0}^{\infty}\left(\frac{z}{\omega}\right)^{n}
$$

for $\left|\frac{z}{\omega}\right|<1$. Differentiation both sides we get

$$
\frac{\frac{1}{\omega}}{\left(1-\frac{z}{\omega}\right)^{2}}=\sum_{n=0}^{\infty}\left(\frac{1}{\omega}\right)^{n} n(z)^{n-1}=\sum_{n=1}^{\infty} n \frac{z^{n-1}}{\omega^{n}} .
$$

Therefore,

$$
\frac{1}{\left(1-\frac{z}{\omega}\right)^{2}}=\sum_{n=1}^{\infty} n \frac{z^{n-1}}{\omega^{n-1}}=\sum_{n=0}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}} .
$$

So

$$
\frac{1}{\left(1-\frac{z}{\omega}\right)^{2}}-1=\left(\sum_{n=0}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}}\right)-1=\left(1+\sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}}\right)-1=\sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}}
$$

Then

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in L, \omega \neq 0} \omega^{-2} \sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}}=\frac{1}{z^{2}}+\sum_{\omega \in L, \omega \neq 0} \sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n+2}} .
$$

Switching the order of the summations an factoring out constants yields

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(n+1) z^{n} \sum_{\omega \neq 0, \omega \in L} \omega^{-(n+2)}=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(n+1) z^{n} G_{n+2}
$$

Since when k is odd, $G_{k}=0$, we can let $n=2 j$, so

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{j=1}^{\infty}(2 k+1) z^{2 j} G_{2 j+2}
$$

Theorem 9.8. Let $\wp(z)$ be the Weierstrass \wp-function for a lattice L. Then,

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-60 G_{4 \wp(}(z)-140 G_{6}
$$

Proof. From Proposition 9.7, we know

$$
\wp(z)=z^{-2}+3 G_{4} z^{2}+5 G_{6} z^{4}+\cdots
$$

Differentiating, we get

$$
\wp^{\prime}(z)=-2 z^{-3}+6 G_{4} z+20 G_{6} z^{3}+\cdots
$$

So

$$
\wp(z)^{3}=z^{-6}+9 G_{4} z^{-2}+15 G_{6}+\cdots
$$

and

$$
\wp^{\prime}(z)^{2}=4 z^{-6}-24 G_{4} z^{-2}-80 G_{6}+\cdots
$$

Let

$$
\begin{gathered}
f(z)=\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+60 G_{4} \wp(z)+140 G_{6} \\
=\left(4 z^{-6}-24 G_{4} z^{-2}-80 G_{6}+\cdots\right)+\left(-4 z^{-6}-36 G_{4} z^{-2}-60 G_{6}+\cdots\right)+\left(60 G_{4} z^{-2}+180 G_{4} z^{2}+300 G_{6} z^{4}+\cdots\right)+\left(140 G_{6}\right) \\
=0 z^{-6}+0 z^{-2}+0+c_{1} z+c_{2} z^{2}+\cdots
\end{gathered}
$$

Therefore $f(z)$ is a power series with no constant term and no negative powers of z. The only possible poles of $f(z)$ are the poles of $\wp(z)$ and $\wp^{\prime}(z)$, which are each $\omega \in L . f(z)$ has no pole at 0 . By 9.3, $f(z)$ is doubly periodic, so $0 \in L \Longrightarrow f(\omega)=f(0)$ for all $\omega \in L$. Therefore $f(z)$ has no poles. By theorem 9.1, $f(z)$ is constant. Since $f(z)$ has no constant term, $f(0)=0$. Therefore $f(z)$ is identically 0 . Hence,

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-60 G_{4 \wp} \wp(z)-140 G_{6}
$$

Setting $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$ gives

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}
$$

therefore, $\left(\wp(z), \wp^{\prime}(z)\right)$ lie on the curve

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

Proposition 9.9. $\triangle \neq 0$

Proof. $\triangle=16\left(g_{2}^{3}-27 g_{3}^{2}\right)$ so we need to show $g_{2}^{3}-27 g_{3}^{2} \neq 0 . \wp^{\prime}(z)$ is doubly periodic and $w_{i} \in L$, so letting $z=-\frac{\omega_{i}}{2}$ gives

$$
\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=\wp^{\prime}\left(w_{i}-\frac{\omega_{i}}{2}\right)=\wp\left(-\frac{\omega_{i}}{2}\right) \text {. }
$$

Since $\wp^{\prime}(-z)=-\wp^{\prime}(z)$,

$$
\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=\wp\left(-\frac{\omega_{i}}{2}\right)=-\wp^{\prime}\left(\frac{\omega_{i}}{2}\right) .
$$

Therefore,

$$
\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0, i=1,2,3 .
$$

Since $\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}$ we see $\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)$ is a root of $4 x^{3}-g_{2} x-g_{3}$. If we can show the 3 roots are distinct, then $\triangle \neq 0$. Let

$$
h_{i}(z)=\wp(z)-\wp\left(\frac{\omega_{i}}{2}\right) .
$$

Then

$$
h_{i}\left(\frac{\omega_{i}}{2}\right)=\wp\left(\frac{\omega_{i}}{2}\right)-\wp\left(\frac{\omega_{i}}{2}\right)=0
$$

and $h_{i}^{\prime}(z)=\wp^{\prime}(z)$ implies

$$
h_{i}^{\prime}\left(\frac{\omega_{i}}{2}\right)=\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0 .
$$

Therefore h_{i} vanishes to order at least 2 at $\frac{\omega_{i}}{2}$, so $\frac{\omega_{i}}{2}$ is a double root of h_{i}. But by 9.1 (5), h_{i} only has 2 zeros counting multiplicities (since $h_{i}(z)$ only has a double pole at $z=0$). Thus $\frac{\omega_{i}}{2}$ is the only zero of $h_{i}(z)$. So

$$
h_{i}\left(\frac{\omega_{j}}{2}\right) \neq 0
$$

when $j \neq i$. Therefore $\wp\left(\frac{\omega_{i}}{2}\right)$ are distinct.
The proposition implies $E: y^{2}=4 x^{3}-g_{2} x-g_{3}$ is the equation of an elliptic curve. Since $\wp(z), \wp^{\prime}(z)$ depend only on $z \bmod L$, we have a function from \mathbb{C} / L to $E(\mathbb{C})$.
Theorem 9.10. Let L be a lattice and let E be the elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$. The map

$$
\begin{gathered}
\Phi: \mathbb{C} / L \longrightarrow E(\mathbb{C}) \\
z \longmapsto\left(\wp(z), \wp^{\prime}(z)\right) \\
0 \longmapsto \infty
\end{gathered}
$$

is an isomorphism of groups.
Proof. To show Φ is an isomorphism of groups, we must show it is (1) onto, (2) one to one, and a (3) homomorphism.
(1) We will start by showing Φ is onto. Let $(x, y) \in E(\mathbb{C})$. Then $\wp(z)-x$ has a double pole by by 9.3 (2), and therefore has zeros by 9.1 (5). So there exists $z \in \mathbb{C}$ such that $\wp(z)=x$. Since $(x, y) \in E(\mathbb{C})$ and $y^{2}=4 x^{3}-g_{2} x-g_{2}$, by 9.8 ,

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}=4 x^{3}-g_{2} x-g_{3}=y^{2} .
$$

Therefore $y^{2}=\wp^{\prime}(z)^{2}$, so $\wp^{\prime}(z)= \pm y$. If $\wp^{\prime}(z)=y$, then there exist z such that $(x, y)=$ $\left(\wp(z), \wp^{\prime}(z)\right)$, so $z \longmapsto(x, y)$. If $\wp^{\prime}(z)=-y$, then $\wp(-z)=\wp(z)=x$ since \wp is even and $\wp^{\prime}(-z)=$ $-\wp(z)=-(-y)=y$ since \wp^{\prime} is odd. Therefore, there exists z such that $(x, y)=\left(\wp(-z), \wp^{\prime}(-z)\right)$, so $-z \longmapsto(x, y)$.
(2) Next we will show Φ is one to one. Assume $\left(\wp\left(z_{1}\right), \wp^{\prime}\left(z_{1}\right)\right)=\left(\wp\left(z_{2}\right), \wp^{\prime}\left(z_{2}\right)\right)$ for $z_{1}, z_{2} \in \mathbb{C}$. Then $\wp\left(z_{1}\right), \wp\left(z_{2}\right)$ and $\wp^{\prime}\left(z_{1}\right)=\wp^{\prime}\left(z_{2}\right) . \wp(z)$ only has poles at $z \in L$. Therefore, if z_{1} is a pole of p, then $z_{1} \in L$ and $z_{2} \in L$, so $z_{1} \equiv z_{2} \bmod L$.

Now assume z_{1} is not a pole of \wp, so $z_{1} \notin L$. Consider the function

$$
h(z)=\wp(z)-\wp\left(z_{1}\right) .
$$

It has a double pole at $z=0$ and no other poles in F (the fundamental parallelogram). Therefore $h(z)$ has exactly 2 zeros by 9.1 (5).

Suppose $z_{1}=\frac{\omega_{i}}{2}$ for some i. Since $\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0$ for $i=1,2,3$ by the proof of 9.9 , so $\wp^{\prime}\left(z_{1}\right)=$ $\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0$ implies z_{1} is a double root of $h(z)$. Therefore z_{1} is the only root. $0=\wp\left(z_{1}\right)=\wp\left(z_{2}\right)$ implies z_{2} is a root, therefore $z_{1}=z_{2}$.

Finally suppose z_{1} is not of the form $\frac{\omega_{i}}{2}$. We see that $h\left(-z_{1}\right)=\wp\left(-z_{1}\right)-\wp\left(z_{1}\right)=\wp\left(z_{1}\right)-\wp\left(z_{1}\right)=0$ because \wp is even and $h\left(z_{1}\right)=\wp\left(z_{1}\right)-\wp\left(z_{1}\right)=0$. Since $h\left(-z_{1}\right)=h\left(z_{1}\right)=0$, and since $z_{1} \not \equiv-z_{1}$ $\bmod L$, the two zeros of h are z_{1} and $-z_{1} \bmod L$. But $h\left(z_{2}\right)=\wp\left(z_{2}\right)-\wp\left(z_{1}\right)=\wp\left(z_{1}\right)-\wp\left(z_{1}\right)=0$ implies that $z_{2} \equiv-z_{1} \bmod L$ which means

$$
y=\wp^{\prime}\left(z_{2}\right)=\wp^{\prime}\left(-z_{1}\right)=-\wp^{\prime}\left(z_{1}\right)=-y .
$$

So $\wp^{\prime}\left(z_{1}\right)=y=0$. But $\wp(z)$ only has a triple pole, so it only has 3 zeros in F. From the proof of 9.9 we know these zeros occur at $\frac{\omega_{i}}{2}$. Since z_{1} is not of the form $\frac{\omega_{i}}{2}$, this is a contradiction. Hence in all cases $z_{1} \equiv z_{2} \bmod L$ and Φ is injective.
(3) We will now show that Φ is a group homomorphism. Let $z_{1}, z_{2} \in \mathbb{C}$ and let

$$
\Phi\left(z_{i}\right)=P_{i} .
$$

First we will only worry about when P_{1}, P_{2} are finite and the line through P_{1}, P_{2} intersects E in 3 distinct finite points (this means that $P_{1} \neq \pm P_{2}$, that $2 P_{1}+P_{2} \neq \infty$, and that $P_{1}+2 P_{2} \neq \infty$). For a fixed z_{1}, this excludes only finitely many values of z_{2}.

Let $y=a x+b$ be the line though P_{1}, P_{2}. Let P_{3} be the third point of intersection of this line with E and let $P_{3}=\Phi\left(z_{3}\right)$ with $z_{3} \in \mathbb{C}$. Then consider

$$
\ell(z)=\wp^{\prime}(z)-\wp(z)-b \text {. }
$$

$\ell(z)$ has zeros at the intersection points of the line $y=a x+b$ and E. Therefore, $\ell(z)$ has zeros at z_{1}, z_{2}, z_{3}. Since $\ell(z)$ has a triple pole at 0 , and no other poles, it has 3 zeros in F by $9.1(5)$. Therefore,

$$
\operatorname{div}(\ell)=\left[z_{1}\right]+\left[z_{2}\right]+\left[z_{3}\right]-3[0] .
$$

Then by $9.1(4), z_{1}+z_{2}+z_{3} \in L$. So

$$
\wp\left(z_{1}+z_{2}\right)=\wp\left(z_{1}+z_{2}+z_{3}-z_{3}\right)=\wp\left(\left(\left(z_{1}+z_{2}+z_{3}\right)+\left(-z_{3}\right)\right)=\wp\left(-z_{3}\right)=\wp\left(z_{3}\right)\right.
$$

since \wp is doubly periodic and even. Also,

$$
\wp^{\prime}\left(z_{1}+z_{2}\right)=\wp^{\prime}\left(z_{1}+z_{2}+z_{3}-z_{3}\right)=\wp^{\prime}\left(\left(z_{1}+z_{2}+z_{3}\right)+\left(-z_{3}\right)\right)=\wp^{\prime}\left(-z_{3}\right)=-\wp^{\prime}\left(z_{3}\right)
$$

since \wp is doubly periodic and odd. Then

$$
\Phi\left(z_{1}+z_{2}\right)=\left(\wp\left(z_{1}+z_{2}\right), \wp^{\prime}\left(z_{1}+z_{2}\right)\right)=\left(\wp\left(z_{3}\right),-\wp^{\prime}\left(z_{3}\right)\right)=-P_{3}=P_{1}+P_{2}=\Phi\left(z_{1}\right)+\Phi\left(z_{2}\right) .
$$

Therefore Φ is a group homomorphism. Although we excluded certain values of z_{i}, continuity ensures that this holds for all values of z_{i}.

The cases involving infinity are easily verified. Then we will consider the case when $P_{1}=P_{2}$ and $y_{1} \neq 0$.

Let $y=a x+b$ be the line tangent to E at P_{1}. Let P_{3} be the other point of intersection of this line with E and let $P_{3}=\Phi\left(z_{3}\right)$ with $z_{3} \in \mathbb{C}$. Then

$$
\ell(z)=\wp^{\prime}(z)-\wp(z)-b .
$$

has zeros at z_{1}, z_{3} and z_{1} has order 2 since $y=a x+b$ is the line tangent to E at $P_{1} . \ell(z)$ still has 3 zeros in F. Therefore,

$$
\operatorname{div}(\ell)=\underset{5}{2\left[z_{1}\right]}+\left[z_{3}\right]-3[0]
$$

Then by $9.1(4), 2 z_{1}+z_{3} \in L$. So

$$
\wp\left(2 z_{1}\right)=\wp\left(2 z_{1}+z_{3}-z_{3}\right)=\wp\left(-z_{3}\right)=\wp\left(z_{3}\right)
$$

and

$$
\wp^{\prime}\left(2 z_{1}\right)=\wp^{\prime}\left(2 z_{1}+z_{3}-z_{3}\right)=\wp^{\prime}\left(-z_{3}\right)=-\wp^{\prime}\left(z_{3}\right) .
$$

Then

$$
\Phi\left(z_{1}+z_{1}\right)=\left(\wp\left(2 z_{1}\right), \wp^{\prime}\left(2 z_{1}\right)\right)=\left(\wp\left(z_{3}\right),-\wp^{\prime}\left(z_{3}\right)\right)=-P_{3}=P_{1}+P_{1}=\Phi\left(z_{1}\right)+\Phi\left(z_{1}\right) .
$$

References: Elliptic Curves: Number Theory and Cryptography by Lawrence C. Washington

