1 Congruence and modular arithmetics

Let a, b, and n be non-negative integers, i.e. $n \in \mathcal{N}$ the set of natural numbers, and $n \neq 0$; then a is said to be congruent to b modulo n, that is

$$a \equiv_n b \quad \text{if and only if} \quad a - b = kn$$

for some integer k. In other words, n divides the difference $(a - b)$. For instance,

$$17 \equiv_5 7 \quad \text{since} \quad 17 - 7 = 2 \times 5.$$

b is a residue of a modulo n and also a is a residue of b modulo n. For any modulus n, the set of integers $\{0, 1, \ldots, n - 1\}$ forms a complete set of residues modulo n:

$$\{r_1, \ldots, r_n\} = \{0, 1, \ldots, n - 1\}$$

The residue r of a modulo n is in the range $[0, n - 1]$. Note that

$$a \mod n = r \quad \Rightarrow \quad a \equiv_n r \quad \text{but not the converse:}$$

$$a \equiv_n r \quad \not\Rightarrow \quad a \mod n = r$$

meaning that $a \equiv_n r$ does not imply that $a \mod n = r$; for instance,

$$17 \mod 5 = 2 \quad \Rightarrow \quad 17 \equiv_5 2 \quad \text{but}$$

$$17 \equiv_5 7 \quad \not\Rightarrow \quad 17 \mod 5 = 7$$

1.1 Properties of modular arithmetics:

Let the symbol (\odot) represent either an addition (+) or a multiplication (\times) operation.

1. Existence of identities:

$$a + 0 \mod n = 0 + a \mod n = a$$

$$a \times 1 \mod n = 1 \times a \mod n = a$$
2. Existence of inverses:

\[a + (-a) \mod n = 0 \]
\[a \times (a^{-1}) \mod n = 1 \quad \text{if } a \neq 0 \]

3. Commutativity:

\[a \odot b \mod n = b \odot a \mod n \]

4. Associativity:

\[a \odot (b \odot c) \mod n = (a \odot b) \odot c \mod n \]

5. Distributivity:

\[a \times (b + c) \mod n = [(a \times b) + (a \times c)] \mod n \]

6. Reducibility:

\[(a \odot b) \mod n = [(a \mod n) \odot (b \mod n)] \mod n \quad \text{or equivalently:} \]
\[(a + b) \mod n = [(a \mod n) + (b \mod n)] \mod n \]
\[(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n \]

- Ring: associativity and distributivity
- Commutative ring: associativity, distributivity, and commutativity
- Galois field: commutative ring where each element \(\neq 0 \) has a multiplicative inverse.

2 Principle of modular arithmetics (reducibility)

The reducibility property states that:

\[(a \odot b) \mod n = [(a \mod n) \odot (b \mod n)] \mod n \]

Proof:

Two integer numbers \(a_1 \) and \(a_2 \) can be written as: \(a_1 = k_1n + r_1 \) and \(a_2 = k_2n + r_2 \), where \(r_1, r_2 \in [0, n - 1] \), and both \(k_1 \) and \(k_2 \) are positive integers. The reducibility property can be proven for the addition operation \(\odot : + \) as follow:

\[(a_1 + a_2) \mod n = [(k_1n + r_1) + (k_2n + r_2)] \mod n \]
\[= [(k_1 + k_2)n + r_1 + r_2)] \mod n \]
\[= (r_1 + r_2) \mod n \]
\[(a_1 + a_2) \mod n = [(a_1 \mod n) + (a_2 \mod n)] \mod n \]

by definition of a residue. Similarly, for the multiplication operation, i.e. \(\odot : \times \):
\((a_1 \times a_2) \mod n = [(k_1n + r_1) \times (k_2n + r_2)] \mod n \)

\(= [(k_1k_2n^2) + (k_1nr_2) + (k_2nr_1) + (r_1r_2)] \mod n \)

\(= [(k_1k_2n + k_1r_2 + k_2r_1)n + (r_1r_2)] \mod n \)

\(= (r_1 \times r_2) \mod n \)

\((a_1 \times a_2) \mod n = [(a_1 \mod n) \times (a_2 \mod n)] \mod n \)

Principle of modular arithmetics

\[
\begin{align*}
\begin{array}{c}
 a_1, a_2 \quad \rightarrow \text{reduction modulo } n \quad \rightarrow \quad (a_1 \mod n), (a_2 \mod n) \\
\text{⊙} \\
\hline
 a_1 \text{⊙} a_2 \quad \rightarrow \text{reduction modulo } n \quad \rightarrow \quad [(a_1 \mod n) \text{⊙} (a_2 \mod n)] \mod n
\end{array}
\end{align*}
\]

3 Modular exponentiation

Using the properties of modular arithmetics, modular exponentiation can be performed with the advantage of limiting the range of intermediate values:

\[e^t \mod n = [e \times e \times \ldots \times e] \mod n \]

\[= \{[e \mod n][e \mod n] \ldots [e \mod n]\} \mod n \]

\[\text{t times}\]

The intermediate values \([e \mod n]\) being reduced within the range of the modulus, that is \([e \mod n] \in [0, n-1] \).

\[e^t \mod n = \prod_{i=1}^{t} (e \mod n) \mod n \]

Example (modular exponentiation):

Compute the following: \(11^{207} \mod 13\)

\[
\begin{align*}
11^{207} \mod 13 &= \left[11^{128+64+8+4+2+1}\right] \mod 13 \\
11^{207} \mod 13 &= \left[11^{128} \times 11^{64} \times 11^{8} \times 11^{4} \times 11^{2} \times 11\right] \mod 13 \\
11^{207} \mod 13 &= \left\{\left[11^{128} \mod 13\right] \left[11^{64} \mod 13\right] \left[11^{8} \mod 13\right] \left[11^{4} \mod 13\right] \left[11^{2} \mod 13\right] \times 11\right\} \mod 13 \\
11^{207} \mod 13 &= \left\{\left[11^{128} \mod 13\right] \left[11^{64} \mod 13\right] \left[11^{8} \mod 13\right] \left[11^{4} \mod 13\right] \times 4 \times 11\right\} \mod 13 \\
11^{207} \mod 13 &= \left\{\left[11^{128} \mod 13\right] \left[11^{64} \mod 13\right] \left[11^{8} \mod 13\right] \times 3 \times 4 \times 11\right\} \mod 13
\end{align*}
\]
\[
11^{207} \mod 13 = \left\{ \left[11^{128} \mod 13 \right] \left[11^{64} \mod 13 \right] \times 9 \times 3 \times 4 \times 11 \right\} \mod 13
\]
\[
11^{207} \mod 13 = \left\{ \left[11^{128} \mod 13 \right] \times 3 \times 9 \times 3 \times 4 \times 11 \right\} \mod 13
\]
\[
11^{207} \mod 13 = \left\{ 9 \times 3 \times 9 \times 3 \times 4 \times 11 \right\} \mod 13
\]
\[
11^{207} \mod 13 = \left\{ 32076 \right\} \mod 13
\]
\[
11^{207} \mod 13 = 5
\]

4 Multiplicative inverses

Let \(a \in [0, n - 1] \) and \(x \in [0, n - 1] \) be a multiplicative inverse of \(a \) such that:

\[
\text{ax mod n = 1}
\]

\(a \) has a unique multiplicative inverse modulo \(n \) when \(a \) and \(n \) are relatively prime or, in other words, if \(\gcd(a, n) = 1 \) (\(\gcd(a, n) \): greatest common divisor of \(a \) and \(n \)).

Example (multiplicative inverses):

Let \(a = 3 \) and \(n = 5 \), then \(\gcd(a, n) = 1 \):

\[
\begin{align*}
 a \times i \mod 5 &= 0 \\
 3 \times 0 \mod 5 &= 0 \\
 3 \times 1 \mod 5 &= 3 \\
 3 \times 2 \mod 5 &= 1 \\
 3 \times 3 \mod 5 &= 4 \\
 3 \times 4 \mod 5 &= 2
\end{align*}
\]

There is a unique inverse for each value of \(a \). The set of inverses \(\{a_i^{-1}\} \) is in fact a permutation of the set of indices \(\{i\} \). Now, changing \(n \) to \(n = 6 \):

\[
\begin{align*}
 a \times i \mod 6 &= 0 \\
 3 \times 0 \mod 6 &= 0 \\
 3 \times 1 \mod 6 &= 3 \\
 3 \times 2 \mod 6 &= 0 \\
 3 \times 3 \mod 6 &= 3 \\
 3 \times 4 \mod 6 &= 0 \\
 3 \times 5 \mod 6 &= 3
\end{align*}
\]
Since \(\gcd(a, n) \neq 1 \), the inverses of \(a \) are not unique.

If \(\gcd(a, n) = 1 \), then there exists an integer \(x \), \(0 < x < n \), such that:

\[
ax \mod n = 1
\]

where, as stated above, the set \(\{a \times i \mod n\} \) is a permutation of \(\{i\} \). The Euclid’s algorithm can be used to compute the greatest common divisor of \(a \) and \(n \).

5 Euclid’s algorithm

The following algorithm determines the greatest common divisor of two numbers, e.g. \(a \) and \(b \):

\[
a = b q_1 + r_1, \quad \text{for } 0 < r_1 < b \\
b = r_1 q_2 + r_2, \quad \text{for } 0 < r_2 < r_1 \\
r_1 = r_2 q_3 + r_3, \quad \text{for } 0 < r_3 < r_2 \\
r_2 = r_3 q_4 + r_4, \quad \text{for } 0 < r_4 < r_3 \\
\vdots \\
r_{k-2} = r_{k-1} q_k + r_k, \quad \text{for } 0 < r_k < r_{k-1} \\
r_{k-1} = r_k q_{k+1}
\]

The last remainder, \(r_k \), is the greatest common divisor of \(a \) and \(b \), i.e. \(\gcd(a, b) = r_k \).

Example (\(\gcd(a, b) \) using the Euclid’s algorithm):

For \(a = 360 \) and \(b = 273 \), determine their greatest common divisor \(\gcd(a, b) \) by employing the Euclid’s algorithm.

\[
\begin{align*}
360 &= 273 \times 1 + 87 \\
273 &= 87 \times 3 + 12 \\
87 &= 12 \times 7 + 3 \\
12 &= 3 \times 4
\end{align*}
\]

Therefore, the greatest common divisor \(\gcd(360, 273) \) is equal to the remainder \(r_3 = 3 \). In fact, \(a \) and \(b \) can be written as:

\[
\begin{align*}
360 &= 5 \times 3 \times 3 \times 2 \times 2 \times 2, \quad \text{and} \\
273 &= 13 \times 7 \times 3
\end{align*}
\]
6 Inverse computation

Consider the complete set \(\{ r_i \} \) of residues modulo \(n \):

\[
\{ r_1, \ldots, r_i, \ldots, r_n \} = \{ 0, \ldots, n - 1 \}
\]

where \(r_i \) is a residue, such that \(a \equiv r_i \). The reduced set of residues modulo \(n \) is defined as the subset of \(\{ r_i \}_{i=1,\ldots,n} \), such that \(r_i \) is relatively prime to \(n \) (excluding 0):

\[
\{ r_i \}_{i=1,\ldots,\phi(n)}
\]

where \(\phi(n) \) (called Euler totient function of \(n \)) represents the number of elements in this reduced set of residues. If

\[
gcd(a, n) = 1 \quad \text{then} \quad gcd(ar_i, n) = 1
\]

for the reduced set of residues \(\{ r_1, \ldots, r_{\phi(n)} \} \), then since \((ar_i) \) is relatively prime with \(n \):

\[
(ar_i) \ mod \ n = r_j
\]

In other words, the set \(\{ r_j \} \) is a permutation of the set \(\{ r_i \} \):

\[
\{ r_j \} = \{(ar_i) \ mod \ n\}_{i=1,\ldots,\phi(n)} = P \circ \{ r_i \}_{i=1,\ldots,\phi(n)}
\]

The following examples give the Euler totient function \(\phi(n) \) for different values of \(n \). For instance, if \(n \) is prime then, by definition: \(\phi(n) = n - 1 \). For \(n = pq \) where \(p \) and \(q \) are primes:

\[
\phi(n) = \phi(pq) \\
\phi(n) = (p - 1) \ (q - 1)
\]

Examples (Euler totient function \(\phi(n) \)):

For the following examples, let \(p, q \) and \(p_i \) be prime numbers while \(e_i \) and \(e \) are positive integers.

1. If \(n = p \), then the reduced set of residues is:

\[
\{ r_i \} = \{ 1, 2, \ldots, p - 1 \}
\]

whereas the Euler function is equal to:

\[
\phi(n) = \phi(p) = p - 1
\]

2. If \(n = p^2 \), the reduced set of residues is:

\[
\{ r_i \} = \{ 1, 2, \ldots, p - 1, p + 1, \ldots, 2p - 1, 2p + 1, \ldots, p^2 - 1 \}
\]

and,

\[
\phi(n) = \phi(p^2) = p(p - 1)
\]
3. If \(n = pq \), the reduced set of residues is:
\[
\{ r_i \} = \{ 1, 2, \ldots, pq - 1 \} - \{ p, 2p, \ldots, (q - 1)p \} - \{ q, 2q, \ldots, (p - 1)q \}
\]
\[
\phi(n) = \phi(pq) = (pq - 1) - (q - 1) - (p - 1) = (p - 1)(q - 1)
\]

4. If \(n = p^e \), the reduced set of residues is:
\[
\{ r_i \} = \{ 1, 2, \ldots, p^e - 1 \} - \{ p, 2p, \ldots, (p^{e-1} - 1)p \}
\]
\[
\phi(n) = \phi(p^e) = (p^e - 1) - (p^{e-1} - 1) = (p^{e-1})(p - 1)
\]

5. If \(n = \prod_{i=1}^{t} p_i^{e_i} \), the Euler function is:
\[
\phi(n) = \phi \left(\prod_{i=1}^{t} p_i^{e_i} \right) = \prod_{i=1}^{t} p_i^{(e_i-1)}(p_i - 1)
\]

An integer \(n \) can always be expressed as a product of primes numbers:
\[
n = \prod_{i=1}^{t} p_i^{e_i} = p_1^{e_1} \times p_2^{e_2} \times \ldots \times p_t^{e_t}
\]

where the \(p_i \)'s are \(t \) distinct prime numbers and their exponents \(e_i \) are positive integers. As indicated above, the number of elements in the reduced set is given by:
\[
\phi(n) = \prod_{i=1}^{t} p_i^{(e_i-1)}(p_i - 1)
\]

6.1 Euler’s generalization theorem

Euler’s generalization theorem states that, for \(a \) and \(n \) (with \(a < n \)) such that \(\gcd(a, n) = 1 \):
\[
[a^{\phi(n)} \mod n = 1]
\]

To show that \(a^{\phi(n)} \mod n = 1 \), consider the reduced set of residues \(\{ r_i \}_{i=1,\ldots,\phi(n)} \) and the (permuted) set of residues \(\{ r_j \} \):
\[
\{ r_j \} = \{ ar_i \mod n \}_{i=1,\ldots,\phi(n)}
\]
\[
\{ r_j \} = P \circ \{ r_i \}_{i=1,\ldots,\phi(n)}
\]
Then the product of all the elements from the two reduced sets of residues, namely \(\{r_i\}\) and \(\{r_j\}\), must be equal:

\[
\prod_{i=1}^{\phi(n)} r_i = \prod_{j=1}^{\phi(n)} r_j
\]

Since the right-hand and left-hand sides of the equation are equal they should also be congruent modulo \(n\):

\[
\prod_{j=1}^{\phi(n)} r_j \equiv \prod_{i=1}^{\phi(n)} r_i \pmod{n}
\]

\[
\prod_{i=1}^{\phi(n)} (ar_i \pmod{n}) \equiv \prod_{i=1}^{\phi(n)} r_i \pmod{n}
\]

\[
\prod_{i=1}^{\phi(n)} \phi(n) r_i \equiv \prod_{i=1}^{\phi(n)} r_i \pmod{n}
\]

because of the reducibility property. Dividing both sides by the factor \(\prod_{i=1}^{\phi(n)} r_i\) leads to:

\[
a^{\phi(n)} \equiv 1 \pmod{n}
\]

and since \(1 \in \{0, \ldots, n-1\}\) then:

\[a^{\phi(n)} \mod n = 1\]

6.2 Fermat’s little theorem

Fermat’s little theorem states that if \(n\) is a prime number, with \(a < n\), then:

\[
a^{n-1} \mod n = 1
\]

by property of the Euler function of a prime number, i.e. \(\phi(n) = n-1\).

6.3 Multiplicative inverses

Consider the expression

\[
x \equiv 1 \pmod{n}
\]

What is the multiplicative inverse \(x\) of \(a\) modulo \(n\) (assuming that \(\gcd(a, n) = 1\))? By Euler’s generalization theorem:
\[ax \mod n = a^{\phi(n)} \mod n = 1 \]

which implies that:

\[x = a^{\phi(n) - 1} \mod n \]

Hence to compute an inverse a modular exponentiation program with the arguments \((a, [\phi(n) - 1], n)\) can be used. If \(n\) is a prime number, then \(\phi(n) = n - 1\) (Fermat’s theorem) and:

\[x = a^{(n-1) - 1} \mod n = a^{n-2} \mod n \]

7 Galois Fields of Order \(p\)

Definition (*Galois Field of Order \(p\)*):

Let \(p\) be a prime number and \(\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}\) be the set of residues modulo \(p\). The finite (Galois) field \(GF(p)\) is defined as the set \(\mathbb{Z}_p\) with the arithmetics modulo \(p\).

Example (*Galois Field modulo \(p = 5\)*):

Consider the Galois Field of order \(p = 5\), i.e. \(GF(5)\). Since \(p = 5\) is a prime, the Galois field \(GF(5)\) consists of \(\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}\). The addition and multiplication operations in \(GF(5)\) are given in Table 1 as well as the additive and multiplicative inverses, \(-w\) and \(w^{-1}\).

<table>
<thead>
<tr>
<th>Addition</th>
<th>Multiplication</th>
<th>Inverses</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>(\times)</td>
<td>(w)</td>
</tr>
<tr>
<td>0 1 2 3 4</td>
<td>0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>1 1 2 3 4</td>
<td>1 0 1 2 3 4</td>
<td>1 4 1</td>
</tr>
<tr>
<td>2 2 3 4 0</td>
<td>2 0 2 4 1 3</td>
<td>2 3 3</td>
</tr>
<tr>
<td>3 3 4 0 1</td>
<td>3 0 3 1 4 2</td>
<td>3 2 2</td>
</tr>
<tr>
<td>4 4 0 1 2</td>
<td>4 0 4 3 2 1</td>
<td>4 1 4</td>
</tr>
</tbody>
</table>

Table 1: Addition and multiplication operations in \(GF(5)\).