
Lecture 14: Discussing
Speedup

William Gropp

2

What is Speedup?

•  In the simplest form,
♦ Speedup(code,sys,p) = TB/Tp

• Speedup measures the ratio of
performance between two objects
♦ Versions of same code, with different

number of processors
♦ Serial and vector versions
♦ C and Fortran
♦ Two algorithms computing the

“same” result

3

Speedup Can Be Useful

• The key is choosing the correct
baseline for comparison
♦ For our serial vs. vectorization

examples, using compiler-provided
vectorization, the baseline is simple –
the same code, with vectorization
turned off

• For parallel applications, this is
much harder:
♦ Choice of algorithm, decomposition,

performance of baseline case

4

Parallel Speedup

• For parallel applications, Speedup
is typically defined as
♦ Speedup(code,sys,p) = T1/Tp
♦ Where T1 is the time on one

processor and Tp is the time using p
processors

• Can Speedup(code,sys,p) > p?
♦ That means using p processors is

more than p times faster than using
one processor

5

Speedup and Memory

• Yes, speedup on p processors can
be greater than p.
♦ Consider the case of a memory-

bound computation with M words of
memory

♦ If M/p fits into cache while M does
not, the time to access memory will
be different in the two cases:
• T1 uses the STREAM main memory

bandwidth
• Tp uses the appropriate cache bandwidth

6

Are there Upper Bounds on
Speedup?

•  Lets look at a simple code. Assume
that almost all of it is perfectly
parallizable (fraction f). The remainder,
fraction (1-f) can’t be parallelized at all.
♦ That is, there is work that takes time W on

1 process; a fraction f of that work will take
time Wf/p on p processors

•  What is the maximum possible speedup
as a function of f?

7

Question

• Stop here and try to compute the
maximum speedup by computing
T1 and Tp in terms of p and f.

8

Amdahl’s Law

•  T1 = (1-f)W + fW = W

•  Tp = (1-f)W + fW/p
•  Speedup = T1/Tp = W / ((1-f)W+fW/p)
•  As p goes to infinity, fW/p goes to zero,

and the maximum speedup is
•  1/(1-f)
•  So if f = 0.99 (all but 1%

parallelizable), the maximum speedup
is 1/(1-.99)=1/(.01)=100

9

Notes on Amdahl’s Law

•  Its pretty depressing – if any non-
parallel code slips into the
application, the parallel
performance is limited

•  In many simulations, however, the
fraction of non-parallelizable work
is 10-6 or less
♦ Due to large arrays or objects that

are perfectly parallelizable

10

N1/2 – Another Measure

•  When measuring performance as a
function of a parameter (such as
number of processors) one question is:
♦ At what value of p is half of the possible

performance achieved?
♦  For example, for parallel performance, how

many processors are required to achieve
half of the possible performance?

•  Answer depends on the specific
situation

11

Example N1/2

• Consider the Amdahl’s law
example
♦ Maximum possible speedup at an

infinite number of processes is 1/(1-f)
• Question: At how many processes

is half of the possible speedup
achieved?

12

Answer for N1/2

• ½ of maximum speedup is 1/(2(1-f))
•  Speedup(p) = 1/((1-f)+f/p)
•  To find p, set these equal (use their

inverses)
♦ 2(1-f) = (1-f) + f/p
♦ 1-f = f/p
♦ P = f/(1-f)

•  E.g., for f = .99, p = 9900 (for a
speedup of only 50!)

13

Overhead and Performance

•  N1/2 a convenient way to look at performance
whenever
♦  T = overhead + cn

•  In the Amdahl’s law case, the overhead is the
serial (non-parallelizable) fraction, and the
number of processors is n

•  In vectorization, n is the length of the vector
and the overhead is any cost of starting up a
vector calculation
♦  Including checks on pointer aliasing, pipeline startup,

alignment checks

