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THE rATE AT which power-management features 
have evolved is nothing short of amazing. Today 
almost every size and class of computer system, from 
the smallest sensors and handheld devices to the 
“big iron” servers in data centers, offer a myriad of 
features for reducing, metering, and capping power 
consumption. Without these features, fan noise would 
dominate the office ambience and untethered laptops 
would remain usable for only a few short hours (and 
only then if one could handle the heat), while data-
center power and cooling costs and capacity would 
become unmanageable.

As much as we might think of power-management 
features as being synonymous with hardware, 
software’s role in the efficiency of the overall system 
has become undeniable. Although the notion of 
“software power efficiency” may seem justifiably 
strange (as software doesn’t directly consume power), 

the salient part is really the way in 
which software interacts with power-
consuming system resources.

Let’s begin by classifying software 
into two familiar ecosystem roles: 
resource managers (producers) and 
resource requesters (consumers). We 
will then examine how each can con-
tribute to (or undermine) overall sys-
tem efficiency.

The history of power management is 
rooted in the small systems and mobile 
space. By today’s standards, these sys-
tems were relatively simple, possessing 
a small number of components, such 
as a single-core CPU and perhaps a disk 
that could be spun down. Because these 
systems had few resources, utilization 
in practice was fairly binary in nature, 
with the system’s resources either be-
ing in use—or not. As such, the strategy 
for power managing resources could 
also be fairly simple, yet effective. 

For example, a daemon might pe-
riodically monitor system utilization 
and, after appearing sufficiently idle 
for some time threshold, clock down 
the CPU’s frequency and spin down 
the disk. This could all be done in a way 
that required little or no integration 
with the subsystems otherwise respon-
sible for resource management (for 
example,  the scheduler, file system, 
among others), because at zero utiliza-
tion, not much resource management 
needed to be done.

By comparison, the topology of mod-
ern systems is far more complex. As 
the “free performance lunch” of ever-
increasing CPU clock speeds has come 
to an end, the multicore revolution is 
upon us, and as a consequence, even 
the smallest portable devices present 
multiple logical CPUs that need to be 
managed. As these systems scale larger 
(presenting more power-manageable 
resources), partial utilization becomes 
more common where only part of the 
system is busy while the rest is idle. 
Of course, CPUs present just one ex-
ample of a power-manageable system 
resource: portions of physical memory 
may (soon) be power manageable, with 
the same being true for storage and 
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managed, the considerations could be 
spatial, temporal, or both.

spatial considerations
Spatial considerations involve decid-
ing which resources to provision in 
response to a consumer’s request in 
time. For an operating-system thread 
scheduler/dispatcher, this might de-
termine to which CPUs runnable 
threads are dispatched, as well as the 
overall optimal distribution pattern of 
threads across the system’s physical 
processor(s) to meet some policy ob-
jective (performance, power efficiency, 

and so on). For the virtual memory 
subsystem, the same would be true for 
how physical memory is used; for a file 
system/volume manager, the block al-
location strategy across disks; and in a 
data center, how virtual machines are 
placed across physical systems. These 
different types of resource managers 
are shown in Figure 1.

One such spatial consideration is 
the current power state of available 
resources. In some sense, a resource’s 
power states can be said to represent 
a set of trade-offs. Some states provide 
a mechanism allowing the system to 

I/O devices. In the larger data-center 
context, the system itself might be the 
power-manageable resource.

Effective resource management on 
modern systems requires that there 
be at least some level of resource man-
ager awareness of the heterogeneity 
brought on by varying resource power 
states and, if possible, some exploita-
tion of it. (Actually, effective resource 
management requires awareness of 
resource heterogeneity in general, with 
varying power states being one way in 
which that resource heterogeneity can 
arise.) Depending on what is being 
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interfaces to clients that are more de-
scriptive in nature. For example, rather 
than providing a narrow interface for 
precise specification of what should 
happen and when:

int   
 schedule _ timer((void)* 
 what(), time _ t when);

a timer interface might instead spec-
ify what needs to be done along with a 
description of the constraints for when 
it needs to happen:

int   
 schedule _ timer((void)* 
 what(), time _ t about _ when, 
  time _ t deferrable _ by, 
   time _ t advancable _ by);

Analogous to consolidating load 
onto fewer sockets to improve spa-
tial resource quiescence, providing 
some temporal latitude allows the 
timer subsystem to consolidate and 
batch process expirations. So rather 
than waking up a CPU n times over a 
given time interval to process n timers 
(incurring some overhead with each 
wakeup), the timer subsystem could 
wake the CPU once and batch process 
all the timers allowable per the (more 
relaxed) constraints, thus reducing 
CPU overhead time and increasing 
power-managed state residency (see 
Figure 2).

efficient Resource consumption
Clearly, resource managers can con-
tribute much to the overall efficiency 
of the system, but ultimately they are 
forced to work within the constraints 
and requests put forth by the system’s 
resource consumers. Where the con-
straints are excessive and resources are 
overallocated or not efficiently used, 
the benefits of even the most sophisti-
cated power-management features can 
be for naught while the efficiency of the 
entire system stack is compromised.

Well-designed, efficient software is 
a thing of beauty showing good pro-
portionality between utilization (and 
useful work done) and the amount of 
resources consumed. For utopian soft-
ware, such proportionality would be 
perfect, demonstrating that when no 
work is done, zero resources are used; 
and as resource utilization scales high-

trade off performance for power effi-
ciency (CPU frequency scaling is one 
example), while others might offer (for 
idle resources) a trade-off of reduced 
power consumption versus increased 
recovery latency (for example, as with 
the ACPI C-states). As such, the act of 
a resource manager selecting one re-
source over another (based on power 

states) is an important vehicle for mak-
ing such tradeoffs that ideally should 
complement the power-management 
strategy for individual resources. 

The granularity with which resourc-
es can be power managed is another 
important spatial consideration. If 
multicore processors can be power 
managed only at the socket level, then 
there’s good motivation to consolidate 
system load on as few sockets as possi-
ble. Consolidation drives up utilization 
across some resources, while quiesc-
ing others. This enables the quiesced 
resources to be power managed while 
“directing” power (and performance) 
to the utilized portion of the system.

Another factor that may play into 
individual resource selection and uti-
lization distribution decisions are the 
characteristics of the workload(s) us-
ing the resources. This may dictate, for 
example, how aggressively a resource 
manager can consolidate utilization 
across the system without negatively 
impacting performance (as a result of 
resource contention) or to what extent 
changing a utilized resource’s power 
state will impact the consumer’s per-
formance.

temporal considerations
Some resource managers may also al-
locate resources in time, as well as 
(or rather than) space. For example, a 
timer subsystem might allow clients 
to schedule some processing at some 
point (or with some interval) in the fu-
ture, or a task queue subsystem might 
provide a means for asynchronous 
or deferred execution. The interfaces 
to such subsystems have tradition-
ally been very narrow and prescriptive, 
leaving little room for temporal opti-
mization. One solution is to provide 

figure 1. A hierarchy  
of resource managers.
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er, the amount of work done scales 
similarly (see Figure 3).

Real software is not utopian, though, 
and the only way to have software con-
sume zero resources is not to run it at 
all. Even running very well-behaved 
software at the minimum will, in prac-
tice, require some resource overhead. 

By contrast, inefficient software 
demonstrates poor proportionality be-
tween resource utilization and amount 
of work done. Here are some common 
examples:

A process is waiting for something,  ˲

such as the satisfying of a condition, 
and is using a timer to periodically 
wake up to check if the condition has 
been satisfied. No useful work is being 
done as it waits, but each time it wakes 
up to check, the CPU is forced to leave 
an idle power-managed state. What’s 
worse, the process has decided to wake 
up with high frequency to “minimize 
latency” (see Figure 4).

An application uses multiple  ˲

threads to improve concurrency and 
scale throughput. It blindly creates as 
many threads as there are CPUs on the 
system, even though the application 
is unable to scale beyond a handful of 
threads because of an internal bottle-
neck. Having more threads means 
more CPUs must be awakened to run 
them, despite little to no marginal con-
tribution to performance with each ad-
ditional thread (see Figure 5).

A service slowly leaks memory, and  ˲

over time its heap grows to consume 
much of the system’s physical memory, 
despite little to none of it actually being 
needed. As a consequence, little oppor-
tunity exists to power manage memory 
since most of it has been allocated.

observing inefficiency in 
the software ecosystem
Comprehensive analysis of software ef-
ficiency requires the ability to observe 
the proportionality of resource utili-
zation versus useful work performed. 
Of course, the metric for “work done” 
is inherently workload specific. Some 
workloads (such as Web servers and 
databases) might be throughput based. 
For such workloads, one technique 
could be to plot throughput (for ex-
ample, transactions per second) versus 
{cpu|memory|bandwidth|storage} re-
source consumption. Where a “knee” 
in the curve exists (resource utilization 

rises, yet throughput does not), there 
is an opportunity either to use fewer 
resources to do the same work or per-
haps to eliminate a bottleneck to facili-
tate doing more work using the same 
resources.

For parallel computation workloads 
that use concurrency to speed up pro-
cessing, one could plot elapsed com-
putation time, versus the resources 
consumed, and using a similar tech-

nique identify and avoid the point of 
diminishing returns.

Rather than using workload-specific 
analysis, another fruitful technique is 
looking at systemwide resource utiliza-
tion behavior at what should be zero uti-
lization (system idle). By definition, the 
system isn’t doing anything useful, so 
any software that is actively consuming 
CPU cycles is instantly suspect. Power-
TOP is an open source utility developed 

figure 4. “idle” inefficiency.
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figure 3. Good efficiency.

Work Done

R
es

ou
rc

e 
u

ti
li

za
ti

on

figure 5. scaling inefficiency.
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looking at the quantity and propor-
tionality of performance given the re-
source utilization, to capture efficiency, 
software designers also need to con-
sider the quantity and proportionality 
of resource utilization given the perfor-
mance. If all this seems too abstract, 
here are some more concrete factors 
to keep in mind:

When designing software that will  ˲

be procuring its own resources, ensure 
it understands what resources are re-
quired to get the job done and yields 
them back when not needed to facili-
tate idle resource power management. 
If the procured resources will be need-
ed on an intermittent basis, have the 
software try to leverage features that 
provide hints to the resource manager 
about when resources are (and are not) 
being used at least to facilitate active 
power management.

With respect to CPU utilization:
When threads are waiting for some  ˲

condition, try to leverage an event-trig-
gered scheme to eliminate the need for 
time-based polling. Don’t write “are we 
there yet?” software.

If this isn’t possible, try to poll in- ˲

frequently.
If it can’t be eliminated, try at least  ˲

to ensure that all periodic/polling activ-
ity is batch processed. Leverage timer 
subsystem features that provide lati-
tude for optimization, such as coarsen-
ing resolution or allowing for timer ad-
vance/deferral.

With respect to memory utilization:
Watch for memory leaks. ˲

Free or unmap memory that is  ˲

by Intel specifically to support this 
methodology of analysis (see Figure 6). 
Running the tool on what should be an 
otherwise idle system, one would expect 
ideally that the system’s processors are 
power managed 100% of the time, but 
in practice, inefficient software (usually 
doing periodic time-based polling) will 
keep CPUs fractionally busy. PowerTOP 
shows the extent of the waste, while 
also showing which software is respon-
sible. System users can then report the 
observed waste as bugs and/or elect to 
run more efficient software. 

Designing efficient software
Efficiency as a design and optimization 
point for software might at first seem 
a bit foreign, so let’s compare it with 
some others that are arguably more es-
tablished: performance and scalability.

Well-performing software maxi- ˲

mizes the amount of useful work done 
(or minimizes the time taken to do it), 
given a fixed set of resources.

Scalable software will demonstrate  ˲

that performance proportionally in-
creases as more resources are used.

Efficient software can be said to be 
both well performing and scalable, 
but with some additional constraints 
around resource utilization. 

Given a fixed level of performance  ˲

(amount of useful work done or amount 
of time taken to do it), software uses the 
minimal set of resources required. 

As performance decreases, re- ˲

source utilization proportionally de-
creases.

This implies that in addition to 

no longer needed. Some operating 
systems provide advisory interfaces 
around memory utilization, such as 
madvise(3c) under Solaris.

With respect to I/O utilization
If possible, buffer/batch I/O re- ˲

quests.

Driving toward an efficient 
system stack
Every so often, evolution and innova-
tion in hardware design brings about 
new opportunities and challenges for 
software. Features to reduce power 
consumption of underutilized system 
resources have become pervasive in 
even the largest systems, and the soft-
ware layers responsible for managing 
those resources must evolve in turn—
implementing policies that drive per-
formance for utilized resources while 
reducing power for those that are un-
derutilized.

Beyond the resource managers, re-
source consumers clearly have a signif-
icant opportunity either to contribute 
to or undermine the efficiency of the 
broader stack. Though getting pro-
grammers to think differently about 
the way they design software is more 
than a technical problem, tools such 
as PowerTOP represent a great first 
step by providing programmers and 
administrators with observability into 
software inefficiency, a point of refer-
ence for optimization, and awareness 
of the important role software plays in 
energy-efficient computing.  
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