
44 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

THE rATE AT which power-management features
have evolved is nothing short of amazing. Today
almost every size and class of computer system, from
the smallest sensors and handheld devices to the
“big iron” servers in data centers, offer a myriad of
features for reducing, metering, and capping power
consumption. Without these features, fan noise would
dominate the office ambience and untethered laptops
would remain usable for only a few short hours (and
only then if one could handle the heat), while data-
center power and cooling costs and capacity would
become unmanageable.

As much as we might think of power-management
features as being synonymous with hardware,
software’s role in the efficiency of the overall system
has become undeniable. Although the notion of
“software power efficiency” may seem justifiably
strange (as software doesn’t directly consume power),

the salient part is really the way in
which software interacts with power-
consuming system resources.

Let’s begin by classifying software
into two familiar ecosystem roles:
resource managers (producers) and
resource requesters (consumers). We
will then examine how each can con-
tribute to (or undermine) overall sys-
tem efficiency.

The history of power management is
rooted in the small systems and mobile
space. By today’s standards, these sys-
tems were relatively simple, possessing
a small number of components, such
as a single-core CPU and perhaps a disk
that could be spun down. Because these
systems had few resources, utilization
in practice was fairly binary in nature,
with the system’s resources either be-
ing in use—or not. As such, the strategy
for power managing resources could
also be fairly simple, yet effective.

For example, a daemon might pe-
riodically monitor system utilization
and, after appearing sufficiently idle
for some time threshold, clock down
the CPU’s frequency and spin down
the disk. This could all be done in a way
that required little or no integration
with the subsystems otherwise respon-
sible for resource management (for
example, the scheduler, file system,
among others), because at zero utiliza-
tion, not much resource management
needed to be done.

By comparison, the topology of mod-
ern systems is far more complex. As
the “free performance lunch” of ever-
increasing CPU clock speeds has come
to an end, the multicore revolution is
upon us, and as a consequence, even
the smallest portable devices present
multiple logical CPUs that need to be
managed. As these systems scale larger
(presenting more power-manageable
resources), partial utilization becomes
more common where only part of the
system is busy while the rest is idle.
Of course, CPUs present just one ex-
ample of a power-manageable system
resource: portions of physical memory
may (soon) be power manageable, with
the same being true for storage and

Power-
efficient
software

Doi:10.1145/1646353.1646370

 Article development led by
 queue.acm.org

Power-manageable hardware can help save
energy, but what can software developers do
to address the problem?

BY eRic sAxe

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 45

managed, the considerations could be
spatial, temporal, or both.

spatial considerations
Spatial considerations involve decid-
ing which resources to provision in
response to a consumer’s request in
time. For an operating-system thread
scheduler/dispatcher, this might de-
termine to which CPUs runnable
threads are dispatched, as well as the
overall optimal distribution pattern of
threads across the system’s physical
processor(s) to meet some policy ob-
jective (performance, power efficiency,

and so on). For the virtual memory
subsystem, the same would be true for
how physical memory is used; for a file
system/volume manager, the block al-
location strategy across disks; and in a
data center, how virtual machines are
placed across physical systems. These
different types of resource managers
are shown in Figure 1.

One such spatial consideration is
the current power state of available
resources. In some sense, a resource’s
power states can be said to represent
a set of trade-offs. Some states provide
a mechanism allowing the system to

I/O devices. In the larger data-center
context, the system itself might be the
power-manageable resource.

Effective resource management on
modern systems requires that there
be at least some level of resource man-
ager awareness of the heterogeneity
brought on by varying resource power
states and, if possible, some exploita-
tion of it. (Actually, effective resource
management requires awareness of
resource heterogeneity in general, with
varying power states being one way in
which that resource heterogeneity can
arise.) Depending on what is being

46 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

interfaces to clients that are more de-
scriptive in nature. For example, rather
than providing a narrow interface for
precise specification of what should
happen and when:

int
 schedule _ timer((void)*
 what(), time _ t when);

a timer interface might instead spec-
ify what needs to be done along with a
description of the constraints for when
it needs to happen:

int
 schedule _ timer((void)*
 what(), time _ t about _ when,
 time _ t deferrable _ by,
 time _ t advancable _ by);

Analogous to consolidating load
onto fewer sockets to improve spa-
tial resource quiescence, providing
some temporal latitude allows the
timer subsystem to consolidate and
batch process expirations. So rather
than waking up a CPU n times over a
given time interval to process n timers
(incurring some overhead with each
wakeup), the timer subsystem could
wake the CPU once and batch process
all the timers allowable per the (more
relaxed) constraints, thus reducing
CPU overhead time and increasing
power-managed state residency (see
Figure 2).

efficient Resource consumption
Clearly, resource managers can con-
tribute much to the overall efficiency
of the system, but ultimately they are
forced to work within the constraints
and requests put forth by the system’s
resource consumers. Where the con-
straints are excessive and resources are
overallocated or not efficiently used,
the benefits of even the most sophisti-
cated power-management features can
be for naught while the efficiency of the
entire system stack is compromised.

Well-designed, efficient software is
a thing of beauty showing good pro-
portionality between utilization (and
useful work done) and the amount of
resources consumed. For utopian soft-
ware, such proportionality would be
perfect, demonstrating that when no
work is done, zero resources are used;
and as resource utilization scales high-

trade off performance for power effi-
ciency (CPU frequency scaling is one
example), while others might offer (for
idle resources) a trade-off of reduced
power consumption versus increased
recovery latency (for example, as with
the ACPI C-states). As such, the act of
a resource manager selecting one re-
source over another (based on power

states) is an important vehicle for mak-
ing such tradeoffs that ideally should
complement the power-management
strategy for individual resources.

The granularity with which resourc-
es can be power managed is another
important spatial consideration. If
multicore processors can be power
managed only at the socket level, then
there’s good motivation to consolidate
system load on as few sockets as possi-
ble. Consolidation drives up utilization
across some resources, while quiesc-
ing others. This enables the quiesced
resources to be power managed while
“directing” power (and performance)
to the utilized portion of the system.

Another factor that may play into
individual resource selection and uti-
lization distribution decisions are the
characteristics of the workload(s) us-
ing the resources. This may dictate, for
example, how aggressively a resource
manager can consolidate utilization
across the system without negatively
impacting performance (as a result of
resource contention) or to what extent
changing a utilized resource’s power
state will impact the consumer’s per-
formance.

temporal considerations
Some resource managers may also al-
locate resources in time, as well as
(or rather than) space. For example, a
timer subsystem might allow clients
to schedule some processing at some
point (or with some interval) in the fu-
ture, or a task queue subsystem might
provide a means for asynchronous
or deferred execution. The interfaces
to such subsystems have tradition-
ally been very narrow and prescriptive,
leaving little room for temporal opti-
mization. One solution is to provide

figure 1. A hierarchy
of resource managers.

Physical Machine

OS
instance

CPU Scheduler

Physical
CPU

Physical
CPU

Physical
CPU

Physical Memory
Management

OS
instance

hypervisor

resource
Consumer

resource
Manager resource

Data Center

virtual
Machine

virtual Machine Scheduler

Physical
Machine

Physical
Machine

Physical
Machine

virtual
Machine

Virtual/Physical Machine Mgr.

Operating System Instance

Application

Scheduler virtual Memory
Subsystem

Storage volume
Manager

virtual
CPU

virtual
CPU

virtual
CPU

Application

Operating System Kernel

figure 2. Benefits of batch processing periodic timers.

no timer Batching
(Short Sleep durations, Frequent Wake-ups)

After timer Batching
(longer Sleep durations, Fewer Wake-ups)

time

time

practice

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 47

er, the amount of work done scales
similarly (see Figure 3).

Real software is not utopian, though,
and the only way to have software con-
sume zero resources is not to run it at
all. Even running very well-behaved
software at the minimum will, in prac-
tice, require some resource overhead.

By contrast, inefficient software
demonstrates poor proportionality be-
tween resource utilization and amount
of work done. Here are some common
examples:

A process is waiting for something, ˲

such as the satisfying of a condition,
and is using a timer to periodically
wake up to check if the condition has
been satisfied. No useful work is being
done as it waits, but each time it wakes
up to check, the CPU is forced to leave
an idle power-managed state. What’s
worse, the process has decided to wake
up with high frequency to “minimize
latency” (see Figure 4).

An application uses multiple ˲

threads to improve concurrency and
scale throughput. It blindly creates as
many threads as there are CPUs on the
system, even though the application
is unable to scale beyond a handful of
threads because of an internal bottle-
neck. Having more threads means
more CPUs must be awakened to run
them, despite little to no marginal con-
tribution to performance with each ad-
ditional thread (see Figure 5).

A service slowly leaks memory, and ˲

over time its heap grows to consume
much of the system’s physical memory,
despite little to none of it actually being
needed. As a consequence, little oppor-
tunity exists to power manage memory
since most of it has been allocated.

observing inefficiency in
the software ecosystem
Comprehensive analysis of software ef-
ficiency requires the ability to observe
the proportionality of resource utili-
zation versus useful work performed.
Of course, the metric for “work done”
is inherently workload specific. Some
workloads (such as Web servers and
databases) might be throughput based.
For such workloads, one technique
could be to plot throughput (for ex-
ample, transactions per second) versus
{cpu|memory|bandwidth|storage} re-
source consumption. Where a “knee”
in the curve exists (resource utilization

rises, yet throughput does not), there
is an opportunity either to use fewer
resources to do the same work or per-
haps to eliminate a bottleneck to facili-
tate doing more work using the same
resources.

For parallel computation workloads
that use concurrency to speed up pro-
cessing, one could plot elapsed com-
putation time, versus the resources
consumed, and using a similar tech-

nique identify and avoid the point of
diminishing returns.

Rather than using workload-specific
analysis, another fruitful technique is
looking at systemwide resource utiliza-
tion behavior at what should be zero uti-
lization (system idle). By definition, the
system isn’t doing anything useful, so
any software that is actively consuming
CPU cycles is instantly suspect. Power-
TOP is an open source utility developed

figure 4. “idle” inefficiency.

Work Done

R
es

ou
rc

e
u

ti
li

za
ti

on

In
ef

fic
ie

nc
y

figure 3. Good efficiency.

Work Done

R
es

ou
rc

e
u

ti
li

za
ti

on

figure 5. scaling inefficiency.

Resource utilization

W
or

k
D

on
e

In
ef

fic
ie

nc
y

48 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

looking at the quantity and propor-
tionality of performance given the re-
source utilization, to capture efficiency,
software designers also need to con-
sider the quantity and proportionality
of resource utilization given the perfor-
mance. If all this seems too abstract,
here are some more concrete factors
to keep in mind:

When designing software that will ˲

be procuring its own resources, ensure
it understands what resources are re-
quired to get the job done and yields
them back when not needed to facili-
tate idle resource power management.
If the procured resources will be need-
ed on an intermittent basis, have the
software try to leverage features that
provide hints to the resource manager
about when resources are (and are not)
being used at least to facilitate active
power management.

With respect to CPU utilization:
When threads are waiting for some ˲

condition, try to leverage an event-trig-
gered scheme to eliminate the need for
time-based polling. Don’t write “are we
there yet?” software.

If this isn’t possible, try to poll in- ˲

frequently.
If it can’t be eliminated, try at least ˲

to ensure that all periodic/polling activ-
ity is batch processed. Leverage timer
subsystem features that provide lati-
tude for optimization, such as coarsen-
ing resolution or allowing for timer ad-
vance/deferral.

With respect to memory utilization:
Watch for memory leaks. ˲

Free or unmap memory that is ˲

by Intel specifically to support this
methodology of analysis (see Figure 6).
Running the tool on what should be an
otherwise idle system, one would expect
ideally that the system’s processors are
power managed 100% of the time, but
in practice, inefficient software (usually
doing periodic time-based polling) will
keep CPUs fractionally busy. PowerTOP
shows the extent of the waste, while
also showing which software is respon-
sible. System users can then report the
observed waste as bugs and/or elect to
run more efficient software.

Designing efficient software
Efficiency as a design and optimization
point for software might at first seem
a bit foreign, so let’s compare it with
some others that are arguably more es-
tablished: performance and scalability.

Well-performing software maxi- ˲

mizes the amount of useful work done
(or minimizes the time taken to do it),
given a fixed set of resources.

Scalable software will demonstrate ˲

that performance proportionally in-
creases as more resources are used.

Efficient software can be said to be
both well performing and scalable,
but with some additional constraints
around resource utilization.

Given a fixed level of performance ˲

(amount of useful work done or amount
of time taken to do it), software uses the
minimal set of resources required.

As performance decreases, re- ˲

source utilization proportionally de-
creases.

This implies that in addition to

no longer needed. Some operating
systems provide advisory interfaces
around memory utilization, such as
madvise(3c) under Solaris.

With respect to I/O utilization
If possible, buffer/batch I/O re- ˲

quests.

Driving toward an efficient
system stack
Every so often, evolution and innova-
tion in hardware design brings about
new opportunities and challenges for
software. Features to reduce power
consumption of underutilized system
resources have become pervasive in
even the largest systems, and the soft-
ware layers responsible for managing
those resources must evolve in turn—
implementing policies that drive per-
formance for utilized resources while
reducing power for those that are un-
derutilized.

Beyond the resource managers, re-
source consumers clearly have a signif-
icant opportunity either to contribute
to or undermine the efficiency of the
broader stack. Though getting pro-
grammers to think differently about
the way they design software is more
than a technical problem, tools such
as PowerTOP represent a great first
step by providing programmers and
administrators with observability into
software inefficiency, a point of refer-
ence for optimization, and awareness
of the important role software plays in
energy-efficient computing.

 Related articles
 on queue.acm.org

Powering Down

Matthew Garrett
http://queue.acm.org/detail.cfm?id=1331293

Maximizing Power Efficiency with
Asymmetric Multicore Systems

Alexandra Fedorova, Juan Carlos Saez,
Daniel Shelepov, and Manuel Prieto
http://queue.acm.org/detail.cfm?id=1658422

Modern System Power Management
Andrew Grover
http://queue.acm.org/detail.cfm?id=957774

Eric Saxe is a staff engineer in the Solaris kernel
Development group at Sun Microsystems. over the past
10 years at Sun, he has worked on a number of scheduler/
dispatcher-related kernel components including the
cMt (chip multithreading) scheduling subsystem, the
Power aware Dispatcher, and MPo (the Solaris NUMa
framework), and he is the lead inventor for several related
U.S. patents.

© 2010 acM 0001-0782/10/0200 $10.00

figure 6. PowertoP.

