Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family

GUIDO W. GRIMM1* and SUSANNE S. RENNER2

1Department of Palaeobotany, Swedish Museum of Natural History, PO Box 50007, 10405 Stockholm, Sweden
2Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany

Received 15 December 2012; revised 6 April 2013; accepted for publication 29 April 2013

Betulaceae, with 120–150 species in six genera, are a family of Fagales that occurs mainly in the Northern Hemisphere. Previous studies of the evolution of Alnus, Betula, Carpinus, Corylus, Ostrya and Ostryopsis have relied on a relatively small number of sequence data and molecular clocks with fixed-point calibrations. We exploited GenBank to construct Betulaceae matrices of up to 900 sequence accessions and 9300 nucleotides of nuclear and plastid DNA; we also computed species consensus sequences to build 46- and 29-species matrices that strike a balance between species sampling and nucleotide sampling. Trees were rooted on Ticodendraceae and Casuarinaceae, and divergence times were inferred under relaxed and strict molecular clocks, using alternative fossil constraints. The data support the traditional two subfamilies, Betuloideae (Alnus, Betula) and Coryloideae, and show that Ostryopsis is sister to Ostrya/Carpinus. The fossil record and molecular clocks calibrated with alternating fossils indicate that the stem lineage of Betulaceae dates back to the Upper Cretaceous, the two subfamilies to the Palaeocene and the most recent common ancestors of each of the living genera to the mid- to late Miocene. A substitution rate shift in Coryloideae between 25 and 15 Mya preceded the mid-Miocene climatic optimum and may be linked to temperate niches that became available following the mid-Miocene. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172, 465–477.

INTRODUCTION

Betulaceae (Fagales) comprise some 120–150 species of trees or shrubs, occurring mostly in the northern temperate zone. A few species occur as far south as the Andes and Sumatra (Kubitzki, 1993). Betulaceae can be recognized by their stipulate, doubly serrate leaves, catkins and small winged fruits or nuts associated with leafy bracts. There are six genera in two subfamilies with overlapping distributions: Alnus Mill. (29–35 species) and Betula L. (42–50) make up Betuloideae and Carpinus L. (26–35), Corylus L. (16), Ostrya Scop. (5–9) and Ostryopsis Decne. (3) make up Coryloideae. Several Alnus species, especially A. rubra Bong., are used in reforestation because of their fast growth and nitrogen fixation; European hazelnut, Corylus avellana L., is an economically important food crop. Despite the relatively small size and several molecular phylogenetic studies, relationships among subfamilies have remained unclear (Table 1). The first phylogenetic analysis, based on plastid rbcL, for Betulaceae was published >20 years ago (Bousquet, Strauss & Li, 1992), but did not include Ostryopsis. Subsequent studies added plastid matK sequences (Kato et al., 1998: one Ostryopsis sp. sampled), nuclear internal transcribed spacer (ITS) sequences (Chen, Manchester & Sun, 1999; Yoo & Wen, 2002; Forest et al., 2005; Li, Shoup & Chen, 2005), further plastid genes and spacers (Yoo & Wen, 2007: combined 2906 nucleotides) and nuclear nitrate reductase sequences (NIA, 3rd intron; Li, Shoup & Chen, 2007: 11 diploid Betula spp.; Li, 2008: 22 species of Coryloideae). The studies that included outgroups mostly placed the root between the two subfamilies of Betulaceae (Table 1). A study focusing on the order Fagales, however, found Alnus and Betula as
Table 1. Support for relationships in Betulaceae based on different taxon and gene samples. Numbers in square brackets refer to the number of species [according to the original papers (see also Supporting Information, S1) for identification or sequencing errors]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>matK BSₚ</td>
<td>Multigene† BSₚ/PP</td>
<td>5S IGS + ITS BSₚ/PP</td>
<td>ITS BSₚ</td>
<td>ITS/morph, multigene§ BSₚ/BSₚ/BSₚ/PP</td>
<td>NIA</td>
</tr>
<tr>
<td>Betulaceae</td>
<td>100 100/1.0</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Betuloideae*</td>
<td>64 NA 79/1.0</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Betula</td>
<td>~ [1]</td>
<td>~ [1]</td>
<td>100/1.0 [7]</td>
<td>100 [34]</td>
<td>~ [1]</td>
<td>~ [1]</td>
</tr>
<tr>
<td>Coryloideae*</td>
<td>100 100/1.0</td>
<td>96/1.0</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Carpinus–Ostrya–Ostryopsis</td>
<td>NA</td>
<td>NA</td>
<td>72/0.94</td>
<td>48</td>
<td><50/<50, <50/0.5</td>
<td>86/NA</td>
</tr>
<tr>
<td>Ostryopsis</td>
<td>~ [1]</td>
<td>~ [1]</td>
<td>~ [1]</td>
<td>~ [1]</td>
<td>~ [1]</td>
<td>~ [1]</td>
</tr>
<tr>
<td>Carpinus–Ostryopsis</td>
<td>99</td>
<td>88/1.0</td>
<td>NA</td>
<td>NA</td>
<td>NA, NA</td>
<td>NA</td>
</tr>
<tr>
<td>Carpinus–Ostrya</td>
<td>100 100/1.0</td>
<td>95/1.0</td>
<td>82</td>
<td>93/<50, 79/0.97</td>
<td>98/91</td>
<td></td>
</tr>
<tr>
<td>Betuloideae/Coryloideae split*</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>99</td>
<td><50/<50</td>
<td>99</td>
</tr>
</tbody>
</table>

NA, clade not represented in tree; ~, thus bipartition not testable. Clades that received moderate to strong support independent of gene and taxon sampling, highlighted in bold; BSₚ, bootstrap support under neighbor joining (NJ) or maximum parsimony (MP); PP, Bayesian posterior probabilities.

*The mutual monophyly of Betuloideae/Coryloideae can only be tested in rooted trees.
†Three plastid genes (atpB, matK, rbcL); one plastid intron (trnL), one nuclear ribosomal RNA gene (18S rDNA) and one mitochondrial gene (matR). The signal stems mostly from the matK partition, with the trnL data forcing Alnus as sister to remaining Betulaceae and matK indicating an Alnus/Betula sister relationship (Kato et al., 1998; G. W. Grimm, pers. observ.).
‡Sampling included multiple accessions from the same species or individuals.
§One plastid gene and two intergenic spacer regions (matK, trnL–trnF, trnH–psbA).
¶In the parsimony tree shown in Li (2008), Corylus and Ostryopsis are swapped, the resulting Corylus/Carpinus/Ostrya clade receiving a BSₚ of 56.
successive sisters to the remaining genera (Li et al., 2004: nuclear 18S rDNA, mitochondrial matR and four plastid markers; Table 1). Species of Ostrya and Carpinus were variously intermixed in nuclear and plastid trees (Yoo & Wen, 2002, 2007; Li, 2008). No study so far has sampled more than one species of Ostryopsis (a third species, O. intermedia B.Tian & J.Q.Liu, was described by Tian, Liu & Liu, 2010).

Molecular data show that the closest relatives of Betulaceae are Ticodendraceae, a monotypic family ranging from Panama to Mexico, and Casuarinaceae, with 69 species in Australia and 27 in Malesia (Li et al., 2004). All three families have good fossil records (Crane, 1989; Scriven & Hill, 1995; Chen et al., 1999; Manchester, Pigg & Crane, 2004; Manchester, 2011). The first Alnus-type pollen is from the Upper Cretaceous (Coniacian, 86.3–89.8 Myr; Kon zalova, 1971; Forest et al., 2005; absolute ages from the chronostatigraphic chart of Cohen, Finney & Gibbard, 2012) and the oldest macrofossils assignable to the family are nutlets of Palaеocarpinus Crane from the late Cretaceous (56–59.2) of southern England and North Dakota (Crane, 1981; Crane, Manchester & Dilcher, 1990). These nutlets resemble Ostrya and Corylus, and do not represent any extant genus (Sun & Stockey, 1992). An extinct lineage close to the root of the clade (formed by Betulaceae, Casuarinaceae and Ticodendraceae) may be represented by Endressianthus Friis, Pedersen & Schoenengerger, from the late Cretaceous of Portugal (Santonian/Campanian, 71 Myr; Friis, Pedersen & Schönengerger, 2003).

The relatively good fossil record for Betulaceae has encouraged molecular-clock studies comparing the plastid substitution rates in the clade with those in other angiosperms (Bousquet et al., 1992) and studies that inferred divergence times among the genera (Forest et al., 2005). Assuming a split of Alnus and Betula at either 80 or 45 Myr, Bousquet et al. inferred rbcL rates of 0.37 or 0.67 × 10^{-4} substitution per site per million years (and similar rates when they used coryloid fossils as calibrations). Forest et al. applied non-parametric rate smoothing (Sanderson, 1997) and five Betulaceae fossils as fixed calibrations, using one at a time, either placed at crown group nodes or at stem lineage nodes. Many of the inferred ages exceeded oldest fossil occurrences of the relevant clades. For instance, the Betulaceae crown group was estimated at 25 Myr older than the first Betulaceae-type pollen from the Coniacian (86.3–89.8 Myr). However, these estimates were based on just 462 nucleotides of ITS and the age for each node was the median of the ages obtained from ten alternative fossil constraints, including five where ancient fossils were assigned to the crown groups of the living genera Alnus, Betula, Carpinus, Corylus and Ostrya. The combination of a small amount of sequence data with so-called ‘consensus estimates’ from ten vastly divergent crown and stem constraints throws doubt on the inferred ages.

Taking advantage of the Betulaceae DNA sequences now available in GenBank, we compiled a matrix of up to 900 sequence accessions and 9300 nucleotides of nuclear and plastid DNA. Species consensus sequences were then computed to obtain less patchy matrices that strike a balance between species sampling and nucleotide sampling. We also added new sequences for Ostryopsis. By representing the genetic variation in each genus (judged from hundreds of sequences), we hoped to better resolve genus and subfamily relationships in Betulaceae. To infer divergence times, we used relaxed and strict clock methods with prior age probability distributions on stem lineage fossils, rather than fixed calibrations on either stem or crown groups. We also wanted to test whether plastid substitution rates inferred 20 years ago (Bousquet et al., 1992) would hold up with more sophisticated clock approaches and greater taxon and gene sampling and if there were any drastic shifts in substitution rates (i.e. branch length differences).

MATERIAL AND METHODS

SAMPLING OF TAXA AND GENETIC MARKERS,
DNA ALIGNMENT

Species names, GenBank accession numbers and vouchers (where available) are listed in the nexus-formatted single-partition matrices included in the online supporting archive (OSA) hosted at http://www.palaeogrimm.org/data. The sources of our new sequences (accession numbers KC412166–KC412181) are Ostryopsis davidiana Deene. from Huhehaote, Inner Mongolia, 40°54′11″34′′, alt. 1280 m, Liu Jianquan 152-3 (LZU) and Ostryopsis nobilis Balf. & W.W.Sm., Daju, Yunnan, 27°16′100′13′, alt. 1910 m, Liu Jianquan 53-7 (LZU).

GenBank data were harvested and processed using GBK2FAS (Göker et al., 2009) and alignments were carried out with MAFFT ver. 5 (standard settings; Katoh et al., 2005), followed by a visual check for inconsistencies or erroneous sequences (details are described in the Supporting Information, Appendix S1). The full alignments comprised 230 sequences for atpB-rbcL and rbcL, 49 for granule-bound starch synthase (GBSSI), 502 for ITS (with many Betulaceae represented by multiple sequences), 252 for trnH-psbA, 75 for rpl16, 395 for trnK-matK and 146 for the trnL region. There were no statistically supported (> 80% maximum likelihood (ML) bootstrap support) conflicting topological placements in trees generated from the individual markers. We also aligned and studied sequences of the nuclear-encoded 18S rDNA
and nitrate reductase (NIA), mitochondrial matR and the plastid atpB gene, but did not use them in the final analyses because they contained no genus-level signal or, in the case of NIA, were too variable to be aligned between the genera. Instead of choosing a single placeholder accession for each species, species consensus sequences were generated with G2CEF (Göker & Grimm, 2008), using the option ‘strict’ and gaps treated as missing data. We then built a 46-taxon, 9321-nucleotide matrix that includes five Alnus spp., nine Betula spp., nine Corylus spp., five Ostrya spp., two Ostryopsis spp. and 14 Carpinus spp., giving a total of 44 Betulaceae, which strikes a balance between species sampling and nucleotide sampling: The matrix contained 32.37% empty cells (gaps or missing data). The matrix Delta Value (mDV); Li et al., 2002; calculated using DISTSTATS (Auch et al., 2006) of the concatenated 46-species matrix is low (0.18), indicating a high tree-likeness of the signal contained in the matrix (mDV).

For dating, we built a reduced matrix of 29 species by selecting up to five species per genus based on their individual Delta Values (iDV; Auch et al., 2006; Göker & Grimm, 2008; see also Supporting Information, Appendix S2), computed from a pairwise model-based (HKY + Λ) distance matrix (see dating). Sequences with low iDV behave in a more tree-like fashion, whereas sequences with high iDV produce topological incongruence or indecisiveness. Earlier studies have established the monophyly of Alnus (Chen & Li, 2004: 34 of the estimated 35 species sampled for ITS), Corylus (Forest & Bruneau, 2000: 15 species sampled for 5S ribosomal DNA; Erdogan & Mehlenbacher, 2000: 12 species sampled for nuclear and plastid markers; Whitcher & Wen, 2001: 13 species sampled for ITS) and Betula (Järvinen et al., 2004: 16 species sampled for a nuclear and a plastid locus; Li et al., 2005: 34 species sampled for ITS).

PHYLOGENETIC ANALYSES

Trees were rooted on Casuarinaceae and Ticodendraceae. The individual data partitions did not yield genus-level topological contradictions and the markers were therefore concatenated (see previous section). Phylogenetic trees were estimated using ML optimization in RAxML-HPC ver. 7.2.6 (Stamatakis, 2006b) and Bayesian optimization (BI) in BEAST ver. 1.74 (Drummond et al., 2012). The ML analyses used the per site rate model (originally labelled ‘CAT’ model), an approximation of the GTR + Λ model (Stamatakis, 2006a) with 25 rate categories, independent models for each data partition and model parameters estimated over the duration of specified runs. Final model parameters and likelihood were optimized under a GTR + Λ model.

Statistical support came from the fast implementation (Stamatakis, Hoover & Rougemont, 2008) of non-parametric bootstrapping (Felsenstein, 1985) in RAxML, with the number of replicates determined by the extended majority rule consensus bootstrap criterion (Pattengale et al., 2009). Competing bootstrap support for alternate phylogenetic splits was investigated with the consensus network module implemented in SplitsTree 4 (Holland & Moulton, 2003; Huson & Bryant, 2006), with edge weights set to ‘COUNT’ (‘bipartition networks’, Grimm et al., 2006). Alternative topologies, generated using Mesquite 2.75 (Maddison & Maddison, 2011) were tested using the Shimodaira–Hasegawa test (Shimodaira & Hasegawa, 1999) implemented in RAxML.

Bayesian tree searches relied on the uncorrelated lognormal relaxed clock, the HKY + Λ substitution model with four rate categories, and a Yule tree prior. Markov chain Monte Carlo (MCMC) were run for 10 million generations, with parameters sampled every 1000 generations. Log files were then analysed with Tracer ver. 1.5 (http://beast.bio.ed.ac.uk/) to assess convergence and to confirm that the effective sample sizes for all parameters were > 200, indicating that MCMC chains were run long enough to reach stationarity. After discarding c. 25% of the saved trees as burn-in, maximum clade credibility trees with median branch lengths based on the remaining trees were produced using TreeAnnotator (part of the BEAST package) and FigTree ver. 1.3.1 (http://tree.bio.ed.ac.uk).

MOLECULAR CLOCK CALIBRATIONS

Three fossil constraints were used in alternative runs and under strict or relaxed clock models, in each case using gamma prior distributions, with the fossil age as the offset and a shape and scale of 1, which allowed some proportion of nodes to be 4–5 Myr older than the offset. First, 71 Myr-old flower fossils (Endressianthus miraensis Friis, Pedersen & Schoenenberger and E. foveocarpus Friis, Pedersen & Schoenenberger) from Portugal, which are ‘particularly close to members of the Betulaceae and may represent an extinct lineage at the root of the Betulaceae’ (Friis et al., 2003: S201), were used as a minimum constraint on the Ticodendraceae/ Betulaceae node. These fossils are of Campanian–Maastrichtian age (Friis et al., 2003). Second, we constrained the split between Alnus and Betula to minimally late Palaeocene (58 Myr), based on the earliest Alnus-type pollen from northern Bohemia (Konzalova, 1971). Fruiting Alnus and Betula material is not known until the mid-Eocene (48 Mya; Chen et al., 1999). Third, the crown age of Coryloideae was constrained to a minimal 56 Myr old based on the extinct genus
Cranea Manchester & Chen, known from late Palaeocene (56–59.2 Myr) localities of the Fort Union Formation in Wyoming and from a lower Eocene (41–56 Myr) locality in the Big-Horn Basin (Manchester & Chen, 1998). Parsimony analyses of morphological characters cited in Forest et al. (2005) placed Cranea as sister to Carpinus, Ostrya and Ostryopsis. Another extinct genus of Coryloideae is Palaeocarpinus Crane, known from the Palaeocene of North America, southern England and China (Sun & Stockey, 1992; Manchester & Guo, 1996; Manchester et al., 2004). The involucres and nuts of Palaeocarpinus are similar to those of extant Ostryopsis, and the male catkins have triporate pollen so that ‘the reconstructed plant conforms to the subfamily Coryloideae but cannot be placed in a modern genus’ (Manchester & Chen, 1998: 522).

RESULTS

RELATIONSHIPS, DIVERGENCE TIMES AND SUBSTITUTION RATES IN BETULACEAE

A NeighborNet shows the genetic distinctness of five of the six genera (Fig. 1). Edge lengths mirror the ML bootstrap and posterior probability (PP) values obtained in tree inference. A long, tree-like portion separates Betuloideae and Coryloideae (Figs 1, 2; see also Supporting Information, Appendix S3). Nuclear GBSSI sequences (Fig. 3) and an ML tree from the plastid data support the genera as mutually monophyletic, with bootstrap support of 92% for Ostrya (five of 5–9 species sampled) and 65% for Carpinus (14 of 26–35 species sampled; Appendix S4a). The best-scoring ML trees from the 29- and 46-taxon matrices (see also Supporting Information, Appen-
placed *Alnus* as sister to all remaining Betulaceae and *Corylus* as sister to *Ostryopsis*, but with low bootstrap support. Investigation of the bootstrap support for alternative placements (Table 2) revealed weak support for *Alnus* and *Betula* as sister groups from the concatenated data, but strong (83/99.8) support for *Ostryopsis* as sister clade to *Carpinus/Ostrya*. A Shimodaira–Hasegawa test showed that the placement of *Alnus*, *Betula* and *Ostryopsis* preferred by the Bayesian analysis (below) was not significantly worse than the topology of the best-scoring ML tree (Table 3).

Divergence times and their 95% confidence intervals for important nodes under strict and relaxed clock models with alternative fossil calibrations are shown in Table 4. Figure 2 shows the chronogram obtained under a relaxed clock calibrated with *Endressianthus* (71 Myr at the node marked in Fig. 2). The ages of the most recent common ancestors of the extant species of the six genera range from the mid- to late Miocene (Fig. 2, Table 4). The split between the two subfamilies is inferred as Palaeocene/Eocene (63–43 Myr) and the divergence between *Alnus* and *Betula* occurred soon thereafter (60–38 Myr). The divergence between
Corylus and the remaining Coryloideae is much younger, dating to the early Oligocene (39–22 Myr). The two species of Ostryopsis diverged from each other c. 5.6 Myr ago. In relaxed clock runs, the uclustdev and coefficient of variation parameter both were 0.34 or 0.35, indicating that the 29-taxon–9321-nucleotide matrix is relatively clock-like. Substitution rates are illustrated by the blue and red colouring of branches in Figure 3. There is an increase along the stem lineage of Coryloideae followed by a slowdown in their crown group to the level observed in Betuloideae. Median substitution rates range from 0.7×10^{-5} at the coryloid root to 0.3×10^{-5} in some branches of Alnus, Betula and Corylus, similar to plastid substitution rates of 0.67 or 0.37×10^{-5} substitutions/site/Myr inferred by Bousquet et al., (1992).

DISCUSSION

RELATIONSHIPS IN Betulaceae

The relationships among the six genera of Betulaceae found under Bayesian (Fig. 2), maximum likelihood (Fig. 2; Supporting Information, Appendix S3; online supporting archive [OSA]) and distance optimization (Fig. 1; Supporting Information, Appendix S2)
support the mutual monophyly of the two subfamilies more clearly than did earlier studies (summarized in Table 1). An analysis of relationships in Fagales, however, had found *Alnus* and *Betula* as successive sisters to the remaining genera, instead of as sister groups (Li et al., 2004). With the current level of DNA sampling, this question may not be resolvable, especially as long-branch attraction from the outgroup *Ticodendron* may be affecting the placement of *Alnus* (Table 2; Fig. 1).

The slightly contradictory signal coming from the plastid genes, non-coding plastid regions and nuclear spacers and introns can be seen by comparing the placements of *Ostryopsis* relative to *Corylus* and *Carpinus/Ostrya* in Figures 1, 2 and 3. The latter two genera differ mainly in their involucral morphology, which in *Carpinus* consists of a prominent unilateral wing (Manchester & Crane, 1987: fig. 23), in *Ostrya* of an utriculate envelope that completely encloses the nutlet (Manchester & Crane, 1987: fig. 24). The nuclear GBSSI sequences support the mutual monophyly of the two genera (see also Supporting Information, Appendix S4a,b), whereas nuclear nitrate reductase gene sequences indicate that *Ostrya* may be nested in *Carpinus* (Li, 2008). We found that the latter marker cannot unambiguously be aligned across genera of Betulaceae (see also NEXUS file in OSA, http://www.palaeogrimm.org/data).

Table 2. Maximum likelihood (ML) bootstrap support for Betulaceae generic relationships in the 46-taxon and 28-taxon data sets

<table>
<thead>
<tr>
<th>Phylogenetic split*</th>
<th>28-taxon set</th>
<th>46-taxon set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betuloideae and Coryloideae</td>
<td>Mutual monophyly of Betuloideae and Coryloideae</td>
<td>61</td>
</tr>
<tr>
<td>Alnus sister to other Betulaceae</td>
<td>Maximum likelihood</td>
<td>52</td>
</tr>
<tr>
<td>Betula sister to other Betulaceae</td>
<td>Bayesian inference</td>
<td>25</td>
</tr>
<tr>
<td>Betulaceae clade</td>
<td>Position of Ostryopsis in Coryloideae</td>
<td>13</td>
</tr>
<tr>
<td>Ostryopsis sister to Corylus/Ostrya</td>
<td>Maximum likelihood</td>
<td>10</td>
</tr>
<tr>
<td>Ostryopsis sister to other Coryloideae</td>
<td>Bayesian inference</td>
<td>1</td>
</tr>
</tbody>
</table>

*Flag (maximum likelihood, Bayesian inference) indicates maximum likelihood preferred (best-scoring 29/46-taxon trees) and Bayesian-predicted (Fig. 3) phylogenetic splits. GBSSI, granule-bound starch synthase; ITS, internal transcribed spacer.

RECONCILING A DEEP FOSSIL RECORD AND RELATIVELY YOUNG MOLECULAR DIVERGENCE TIMES OF EXTANT BETULACEAE

Inferring divergence times in Betulaceae has proved more challenging than one would expect from their good fossil record. Angiosperm-wide molecular dating efforts placed the split between Betulaceae and Casuarinaceae at 35–37 or 27–29 Myr and that between *Alnus* and *Betula* at 19–25 or 18–20 Myr (Wikström, Savolainen & Chase, 2001; Bell, Soltis & Soltis, 2010), dates that are much younger than those inferred from fossils, which show that Casuarinaceae, Betulaceae and Ticodendraceae had differentiated at 86 and 71 Mya (Crane et al., 1990; Scriven & Hill, 1995; Chen et al., 1999; Friis et al., 2003; Manchester, 2011). Both clock studies used nuclear 18S rDNA and plastid *rbcL* and *atpB* genes, with the first relying on a single calibration point (the divergence of Cucurbitales and Fagales) and the second on 36 calibration points. The reason for the too-young ages probably lies in the short branch lengths from *rbcL* and *atpB*, and the near absence of a phylogenetic signal in the 18S data for Fagales, meaning this marker cannot be used to infer divergence times from genetic branch lengths. *RbcL* shows 16, *atpB* 14 substitutions between the outgroup *Ticodendron* and the
ten species of Betula and Alnus in our matrix, but Wikström et al. (2001) and Bell et al. (2010) included a single species from each of these genera, resulting in their young inferred divergence times.

Compared with the (too) young ages inferred in these angiosperm-wide studies, the ages inferred in the Betulaceae-focused work of Forest et al. (2005) were surprisingly old, in several cases exceeding earliest palaeobotanical occurrences of Betulaceae. The number of species sampled by Forest et al. was similar to ours (26 vs. 27 Betulaceae), but only 462 nucleotides were used compared with the 9321 used here, and fossils were applied as single fixed calibration points, rather than as prior probability distributions (such as the gamma distributions used here; MATERIAL AND METHODS). Forest et al. also focused on median ages obtained with ten alternative placements of five fossils, meaning that the effect of each fossil entered the median twice, once when that fossil was assigned to the crown and once when it was assigned to the stem. Of the five fossil records these authors used to fix the crown or stem ages (Alnus 65.0 Myr; Betula 49.0 Myr; Corylus 49.0 Myr, Carpinus 49.0 Myr, Ostrya 33.7 Myr), only the Alnus constraint is also used here. Our other constraints were Endressianthus (Friis et al., 2003) for the Betulaceae stem lineage and Cranea (Manchester & Chen, 1996, Manchester & Chen, 1998) for the Coryloideae stem lineage, because we wanted to use Corylus, Carpinus and Ostrya fossils to cross-validate our DNA-based estimates.

Cross-validation (against other fossil evidence) shows that the inferred divergence times match the fossil record well (Fig. 3). Thus, fruits and leaves assignable to Ticodendron Gómez-Laur. & L.D.Gómez (Ferrignocarpus Manchester) have been found in early mid-Eocene deposits from Oregon (48.32 Myr) and in the London Clay (c. 50 Myr old; Manchester, 2011). As Ticodendron consists of a single surviving species, these fossils cannot be assigned in a DNA phylogenetic tree. Nevertheless, they indicate that the split between Ticodendraceae and Betulaceae must be at least 50 Myr old, which does not conflict with our constraint of this split to 71 Myr, based on the Endressianthus fossil (in one run). Also, the age of 49 (38–60) Myr that we inferred for the Alnus/Betula split using the Endressianthus calibration fits reasonably well with the earliest Alnus foliage and ovulate cones from the 49–52 Myr-old McAbee flora of British Columbia, a site that also yielded leaves, catkins and pollen of Betula leopoldae Wolfe & Wehr (Crane & Stockey, 1987; Dillhoff, Leopold & Manchester, 2005). Third, the age of 53 (43–63) Myr we inferred for the Coryloideae stem lineage (when this was not itself constrained) overlaps with the earliest fossils of Coryloideae from the late Palaeocene/Thanetian (56–59.2 Myr). The earliest fossils assigned to Corylus and Carpinus appear in the early Eocene Klondike Mountain Formation dated to 50–49 Myr (Pigg, Manchester & Wehr, 2003); they were used by Forest et al. (2005) to fix crown or stem ages of these genera to 49 Myr. The ages inferred here for the Corylus and Carpinus/Ostrya stem lineages are 29 (22–39) Myr and 15 (10–21) Myr (Fig. 2, Table 4), 20 and 34 Myr younger than the Klondike fossils, suggesting that these fossils represent extinct precursors.

The main earlier effort to date Betulaceae (Forest et al., 2005) could not use the Endressianthus fossil (Friis et al., 2003) as a constraint because of the taxon sampling in that study, which precluded assignment of this fossil (non-parametric rate smoothing does not permit constraining the root itself). The study did, however, use the earliest Alnus-type pollen (Alnipollenites R.Potonié and Paraalnipollenites L.S.Hills & S.Wallace) also used here to fix the age of the Alnus stem lineage to 65 Myr (whereas we assigned a gamma prior with an offset at 58 Myr, allowing a proportion of the inferred ages to be 62 Myr or older). With this calibration, Forest et al. inferred an age for the Ticodendraceae/Betulaceae split of 70.8 Myr (their Table 3, using ML branch lengths; 86.5 Myr using ACCTRAN branch lengths and 81.2 Myr using DELTRAN branch lengths), nicely matching the age of Endressianthus (71 Myr). The same calibration gave an age for the Coryloideae crown group of 41.7–
57.9 Myr (Forest et al.; Table 3), in agreement with the Coryloideae fossil record; for example, Cranea and Palaeocarpinus known from the late Palaeocene (56–59 Myr) and early Eocene (41–56 Myr; Sun & Stockey, 1992; Manchester & Guo, 1996; Manchester et al., 2004). When Forest et al. (2005) instead fixed the age of the most recent common ancestor of the six Alnus spp. in their 462-nucleotide long ITS tree to 65 Myr, they obtained ages of 130.5 Myr for the Ticodendraceae/ Betulaceae node and 76.9 Myr for the Coryloideae crown group, exceeding the oldest fossils of these clades. Conversely, when they did not fix the ages of Corylus and Carpinus, but only used their Alnus/Betula stem constraint of 65 Myr, they inferred ages of 15.1 Myr for the Corylus crown and 24.3 for the Carpinus crown, similar to our results. Their oldest inferred ages always resulted from fixing the ages of genus-level crown groups to Eocene times.

Placing loose prior probabilities on stem lineage ages, not crown ages, is usually preferable based on two arguments. First, it is implausible that the most recent common ancestor of a handful of living species that barely differ in >9000 nucleotides of plastid, mitochondrial and nuclear DNA lived 65 Myr ago. Clades that survive that long are either extremely species-rich or show long genetic branches. Second, following Doyle & Donoghue (1993), fossils should be assigned conservatively, i.e. constraining the ages of stem lineages, not crown groups. Placing five fossils at ten nodes and then focusing on the median age obtained with all of them must also be diffusing any correct temporal signal contained in the genetic branch lengths.

SUBSTITUTION RATE SHIFTS IN BETULACEAE AND THEIR RELATION WITH ECOLOGY

Although the inferred median substitution rates (from 0.7 × 10⁻⁵ at the coryloid root to 0.3 × 10⁻⁵ in some branches of Alnus, Betula and Corylus) are normal for woody angiosperms (Albert et al., 1994), there clearly is an increase along the stem lineage of Coryloideae, followed by a slowdown in their crown group to the level observed in Betuloideae (Fig. 2). The branch length differences (and rate shifts) may have to do with average seed dispersal and gene flow distances that could influence species formation. Pollen and seeds of Betula can be carried over significant distances (e.g. Ford, Sharik & Feret, 1983; Hjelmroos, 1991; Matlack, 1991), partly facilitated by climates with continuous ice/snow covers during winter (D- and E-type climates; see also Supporting Information, SI 4), allowing for secondary dispersal (Matlack, 1989). Birch pollen can be detected across Scandinavia before the flowering season of local birch populations (Hjelmroos, 1991; Skjøth et al., 2007) and
backward trajectory analyses suggest pollen dispersal over long distances in north-eastern Europe (Šauliene & Veriankaite, 2006) and north-western Europe (Skjøth et al., 2008). *Betula* is also the most cold-tolerant genus of Northern Hemisphere Fagales, with some species extending into high-alpine and arctic environments (Dfc, Dfd, ET climates according to Köppen–Geiger; Kottek et al., 2006; see also Supporting Information, SI 4). *Alnus* resembles *Betula* in its pollen and seed dispersal (Ridley, 1930) and *Alnus* spp. also occur in a wide range of climates (see also Supporting Information, SI 4), although they all depend on ready access to ground water (Tallantire, 1992; Priedits, 1997). These ecological traits may explain why *Alnus* and *Betula* were able to diversify into new habitats (Mai, 1995; Denk & Grimm, 2009).

Corylus, like Fagus L. and Quercus L., relies on jays for dispersal (Garrulus, Corvidae; Haffer & Bauer, 1993) and other birds and small mammals (Ridley, 1930). In contrast, the winged seeds of Carpinus, Ostrya and Ostryopsis are wind-dispersed (Ridley, 1930), although they may not cover the same distances as *Betula* and *Alnus* seeds. Our sparse species sampling, however, precludes a more in-depth analysis. The inferred substitution rate shift in Coryloideae between 25 and 15 Mya (Fig. 2; Table 4) precedes the sister of *Carpinus/Ostrya* and that Betuloideae and Coryloideae are mutually monophyletic, indeed sister to *Carpinus/Ostrya* (Fig. 2; Table 4). These ecological traits may explain why *Alnus* and *Betula* were able to diversify into new habitats (Mai, 1995; Denk & Grimm, 2009).

Conclusions

Using curated GenBank data is becoming ever more important as researchers construct huge matrices from public data repositories (Bininda-Emonds, 2004; McMahon & Sanderson, 2006; Chatterjee et al., 2009). Starting from > 900 available sequences for Betulaceae in GenBank, we built 46- and 29-species matrices of 9321 aligned nucleotides that balanced the trade-off between taxon and DNA sampling. However, instead of choosing a single placeholder accession for each species, as is usually done, we computed species consensus sequences and then used the criterion of ‘tree-like signal’ to select the most suitable available species of Betulaceae. The resulting networks and phylogenetic trees suggest that *Ostryopsis* is indeed sister to *Carpinus/Ostrya* and that Betuloideae and Coryloideae are mutually monophyletic, which was not clear before. We used relatively few of the many Betulaceae fossils as constraints, preferring to instead use them to cross-validate inferred node ages. Inferred substitution rate shifts in a few places in the phylogenetic trees may be linked to different rates of allopatric species formation, but this needs to be tested with denser phylogenetic, geographical and ecological species sampling.

Acknowledgements

We thank Jianquan Liu for sharing his unpublished sequences of *Ostryopsis*. G.W.G. acknowledges funding by the Vetenskapsrådet (Swedish Research Council), project no. 2008–3726.

References

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Notes on data curation, including notes on apparently erroneous sequences in GenBank.

Appendix S2. Distance statistics.

Appendix S3. The best-scoring maximum likelihood (ML) trees inferred from 29- and 46-taxon matrices.

Appendix S4. Geographic and climatic distribution of Betulaceae with a graphical overview (**S4a**) and tabulated data (**S4b**).