
GUALTIERO PICCININI

COMPUTATION WITHOUT REPRESENTATION1

ABSTRACT. The received view is that computational states are individu-
ated at least in part by their semantic properties. I offer an alternative,
according to which computational states are individuated by their func-
tional properties. Functional properties are specified by a mechanistic
explanation without appealing to any semantic properties. The primary
purpose of this paper is to formulate the alternative view of computational
individuation, point out that it supports a robust notion of computational
explanation, and defend it on the grounds of how computational states are
individuated within computability theory and computer science. A sec-
ondary purpose is to show that existing arguments for the semantic view are
defective.

1. THE PROBLEM OF COMPUTATIONAL INDIVIDUATION

In some fields, such as computer science and cognitive sci-
ence, there are scientific theories that explain the capacities of
a mechanism � respectively, the computer and the brain �
by appealing to the computations it performs. This paper per-
tains to the individuation of computational states, inputs, and
outputs within such scientific theories. For short, I will main-
ly talk about computational states; the same conclusions ap-
ply to computational inputs and outputs.

The received view is that ‘‘[t]here is no computation with-
out representation’’ (Fodor 1981, p. 180). The reason usually
given is that computational states are individuated, or taxon-
omized, by their semantic properties. The same point is
sometimes made by saying that computational states have
their content essentially.2 I call this the semantic view of com-
putational individuation. The semantic view may be formu-
lated in stronger or weaker forms. In its strongest version, all
and only semantic properties of a state are relevant to its

Philosophical Studies (2006) � Springer 2006
DOI 10.1007/s11098-005-5385-4

computational individuation. Probably, no one subscribes to
this version. In weaker versions, either all semantic properties
or only semantic properties of a state are relevant to its indi-
viduation. The weakest, and most plausible, versions main-
tain that a computational state is partially individuated by
some of its semantic properties (and partially by non-seman-
tic properties).3 Although supporters of the semantic view
have rarely distinguished between weak and strong versions
of their view and have not specified in great detail which
semantic properties and which non-semantic properties are
relevant to the individuation of computational states, this will
not matter much here. In this paper, I argue against any ver-
sion of the semantic view.4

In this paper, I propose an alternative to the semantic
view, which I call functional view of computational individua-
tion. According to the functional view, computational states
are individuated by their functional properties, and their
functional properties are specified by a mechanistic explana-
tion in a way that need not refer to any semantic properties.
A mechanistic explanation is a description according to which
a mechanism (e.g., the human body) has certain components
(e.g., the heart), the components have certain functions (e.g.,
pumping blood) and are organized together (e.g., the heart is
connected to the arteries in such and such a way), and the
mechanism exhibits its capacities (e.g., blood circulation) be-
cause it is constituted by the relevant components, their func-
tions, and their organization.5 Before proceeding, a few
caveats are in order.

First, the issue of computational individuation should not
be confused with the issue of which properties of computa-
tional states are causally efficacious within a computation.
Here, the received view is that computational states are caus-
ally efficacious by virtue of properties that are not semantic.
According to this view, which may be called the non-semantic
view of computational causation, computational processes are
‘‘insensitive’’ or ‘‘indifferent’’ to the content of computational
states; rather, they are sensitive only to some non-semantic

GUALTIERO PICCININI

properties of computational states. The properties to which
computational processes are sensitive are often labeled as
‘‘formal’’ or ‘‘syntactic.’’6 It remains to be seen how compu-
tational states are to be individuated.

Second, the issue of computational individuation should
not be confused with the issue of whether computation is suf-
ficient for content or intentionality. Some critics of computa-
tional theories of mind maintain that being a computational
state is insufficient for having original, or non-derived, inten-
tionality (e.g., Searle, 1980; Horst, 1996). They assume that
computational states are not semantically individuated and
argue that (non-semantically individuated) computational
states cannot have original intentionality. These authors,
however, do not offer a fully worked out alternative to the
semantic view of computational individuation. One of them
has even argued that there is no observer-independent way to
individuate computational states (Searle, 1992). In response,
many supporters of the computational theory of mind have
retained the view that computational states are individuated,
at least in part, by their semantic properties.

Although I reject the semantic view of computational indi-
viduation, I will remain neutral on whether being computa-
tional is sufficient for having original intentionality. That
depends on what original intentionality amounts to � some-
thing on which there is little consensus. The functional view
of computational individuation does not entail that computa-
tional states have no content � they may or may not have
content. Nor does it entail that being computational is insuf-
ficient for having original content or intentionality � perhaps
some aspects of original content supervene on computational
properties. What it does entail is that, if a computational
state has content, then, to the extent that such content does
not supervene on the computational properties essential to
the state, the computational state does not have its content
essentially.

Third, I reject the most popular methodology adopted by
participants in the current debate. At least since Burge’s

COMPUTATION WITHOUT REPRESENTATION

‘‘Individualism and the Mental’’ (Burge, 1986), the principal
battlefield in this area has been the correct interpretation of
Marr’s theory of vision (Marr, 1982). Unfortunately, as some
participants have noted, there may be no fact of the matter,
for Marr was not explicitly concerned with philosophical is-
sues about the individuation of computation. More impor-
tantly, as distinguished as his work is, Marr was only one
person. What if his theory was wrong or confused in this
respect?

Instead of providing another Marr commentary, I will fo-
cus on the way computational states are individuated within
the scientific practices that are the source of the modern, rig-
orous notion of computation and computational explanation.
The modern notion of computation, on which computational
explanation in psychology and neuroscience is based, origi-
nates in computability theory and computer science. In get-
ting clear on the individuation of computational states, those
are the scientific practices that we should examine.

In moving forward, we must avoid a common but serious
mistake. Many readers, especially those familiar with com-
puter science and computability theory, will readily agree that
in those disciplines, computational states are individuated by
their formal or syntactic properties. Since anyone who has ta-
ken an introductory logic course knows that syntactic proper-
ties are distinct from semantic properties, these readers will
be tempted to see the functional view of computational indi-
viduation as old news. Surely, such readers will conclude, ev-
ery philosopher worth her salt must acknowledge that
computational states are individuated syntactically rather
than semantically.

But this is far from the case. The semantic view is, indeed,
widely shared � explicitly or implicitly � among those who
have taken a stance on the individuation of computational
states in print.7 The explanation is not that philosophers of
mind are generally unfamiliar with computer science and
computability theory. Rather, supporters of the semantic
view, as we shall see later in more detail, have reasons for

GUALTIERO PICCININI

their view. One such reason is that it has seemed difficult to
give an account of syntactic properties without appealing to
semantic properties (cf. Crane, 1990; Jacquette, 1991; Bontly,
1998). This is where mechanistic explanation comes in.

I don’t know how to tell whether a property is syntactic. In
addition, although the notion of syntactic property plausibly
applies to at least some computational states that are made
out of strings of symbols, I doubt that it applies in any inter-
esting sense to monadic computational states, such as the
internal states of Turing machines (see below). Finally, even
when the notion of syntactic property applies, I doubt that it
can be used to individuate computational states as finely as
we need. Therefore, I am not arguing that computational
states are individuated by their syntactic properties. Rather,
the functional view accounts for computational properties di-
rectly in terms of functional properties.

The functional properties that are relevant to computa-
tional individuation are the presence in a mechanism of cer-
tain components (such as memories, processors, etc.), relevant
relations between components (such as the transmission of
signals), states of those components (such as letters from a
discrete alphabet and monadic digital states), and functions
of the components (such as performing operations on letters).
My contention is that the appropriate kind of mechanistic
explanation is sufficient to individuate computational states
without appealing to either semantic or syntactic properties.

Perhaps syntactic properties are a specific subset of compu-
tational properties, and perhaps some semantic properties can
be partially explained in terms of some computational prop-
erties. If so, then the functional view of computational indi-
viduation offers resources for an account of syntactic
properties and at least some aspects of some semantic proper-
ties. I will not explore these matters here, and I will remain
neutral about them.

The only alternative to the semantic view that is clearly
stated in the philosophical literature is that computational
states are individuated by their causal properties (Chalmers,

COMPUTATION WITHOUT REPRESENTATION

1996; Copeland, 1996; Scheutz, 1999). But causal individua-
tion, without constraints on which causal powers are relevant
and which irrelevant to computation, is too weak. It does not
support a robust notion of computational explanation � the
kind of explanation that is needed to explain the capacities of
computers, brains, and other putative computing mechanisms
in terms of their putative computations.

Supporters of the causal individuation of computational
states readily admit that under their view, every state is a
computational state and every causal process is a computa-
tion. But this is tantamount to collapsing the notion of com-
putation into the notion of causal process. In this paper, we
are not concerned with causal processes in general but with
the specific processes that are invoked by computer scientists
and cognitive scientists to explain the capacities of computers
and brains. Hence, we need a more restrictive notion of com-
putation. Here is, again, where mechanistic explanation helps.
For mechanistic explanation gives us resources to distinguish
between explanatorily relevant and irrelevant components,
functions, and causal relations. When supplemented by an ac-
count of functional properties that are relevant to the individ-
uation of computational states, mechanistic explanation
provides the basis for a notion of computation that does not
collapse into the notion of causal process.8

The primary purpose of this paper is to formulate the func-
tional view of computational individuation, point out that it
supports a robust notion of computational explanation, and
defend it on the grounds of how computational states are
individuated within computability theory and computer sci-
ence. This will be done in the next section. A secondary pur-
pose is to show that existing arguments for the semantic view
are defective. This will be done in the following section.
Along the way, I will hint that the notion of functional prop-
erty employed by the functional view can be legitimately fle-
shed out by supplementing mechanistic explanation with an
account of the functional properties that are relevant to com-
putation. In this paper, I do not have room for a detailed

GUALTIERO PICCININI

defense of the last claim; that will have to wait for another
occasion.

2. THE FUNCTIONAL VIEW OF COMPUTATIONAL

INDIVIDUATION

In the mathematical theory of computation, abstract comput-
ing mechanisms are individuated by means of formal descrip-
tions, some of which are called programs. Programs and
other formal descriptions of computing mechanisms specify
which inputs may enter the mechanism, how the inputs affect
the internal states of the mechanism, and which outputs come
out of the mechanism under which conditions. Inputs and
outputs are strings of letters from a finite alphabet, often
called symbols.

In computability theory, symbols are typically marks on
paper individuated by their geometrical shape (as opposed to
their semantic properties). Symbols and strings of symbols
may or may not be assigned an interpretation; if they are
interpreted, the same string may be interpreted differently,
e.g., as representing a number, or a program, etc., depending
on what the theorist is trying to prove at any given time. In
these computational descriptions, the identity of the comput-
ing mechanism does not hinge on how the strings are inter-
preted. Hence, within computability theory, symbols do not
have their content essentially.

For example, the best-known computational formalism is
that of turing machines (TMs). Standard TMs have two prin-
cipal components: a potentially infinite tape, whose function is
to hold symbols, and an active device, whose function is to
move along the tape and write and erase symbols on it. Partic-
ular TMs are individuated by a finite list of instructions of the
following form: if on the tape there is a certain letter and the
active device is in a certain internal state, then the active de-
vice prints a certain letter, moves one step to the left (or right),
and goes into a certain state. Each particular TM is uniquely
individuated by its specific list of instructions, which implicitly

COMPUTATION WITHOUT REPRESENTATION

defines the relevant alphabet. Nothing in these descriptions in-
volves any semantic properties; they simply describe how the
active component of the TM reacts to the presence of certain
letters on the tape while in certain internal states.

In computability theory, internal states of TMs are monad-
ic and are never assigned interpretations. Inputs and outputs
of TMs, which are strings of symbols, are typically inter-
preted, but they need not be. Sometimes it is useful to de-
scribe TMs without assigning any interpretation to their
inputs and outputs. A good example is a TM discovered by
J. Buntrock and H. Marxen in 1989 (cited by Wells, 1998). It
uses two symbols and has only five possible internal states.
This machine is offered as a demonstration of how difficult it
is to predict the behavior of a TM from its abstract descrip-
tion, and how a very simple TM can have very complex
behavior. When started on a blank tape, this simple TM halts
after executing 23,554,764 steps. As Wells describes it, noth-
ing in Buntrock and Marxen’s TM has any content under
anybody’s notion of content, yet a computability theorist has
no difficulty in recognizing it as a specific TM, which is un-
iquely individuated by its instructions.

The identity of specific TMs is determined by their instruc-
tions, not by the interpretations that may or may not be as-
signed to their inputs and outputs. More generally, the whole
mathematical theory of computation can be formulated with-
out assigning any interpretation to the strings of symbols
being computed (e.g., Machtey and Young 1978). Even more
generally, much research in fields that rely on computational
formalisms, such as algorithmic information theory and the
study of formal languages, proceeds without assigning any
interpretations to the computational inputs, outputs, and
internal states that are being studied.

The above considerations apply straightforwardly to ordin-
ary, non-universal TMs, and any other computing mechanism
whose behavior is not controlled by a program. This class in-
cludes standard connectionist computing mechanisms. Given
their architecture, these are mechanisms that always perform

GUALTIERO PICCININI

the same computation on their inputs. Which computation
they perform is determined by their architecture and their
characteristic list of instructions (or weight distribution, in
the case of most connectionist computing mechanisms), but
those instructions (or weight distributions) are not executed
by the machine � they are hardwired, as it were.

What about universal TMs and their concrete counterparts,
program-controlled computers? They operate by executing
instructions, and which computation they perform depends on
which instructions they execute. This special capacity may ap-
pear to require individuation by the semantic properties of the
instructions. Thus, a general treatment of computational indi-
viduation cannot ignore computing mechanisms that execute
instructions. In dealing with them, I will shift from the ab-
stract to the concrete realm, thereby also showing that both
realms can be handled within the same functional account.

In the practice of computer programming, programs are
created by combining instructions that are prima facie con-
tentful. For example, a high-level programming language may
include a control structure of the form UNTIL P TRUE DO
___ ENDUNTIL.9 In executing this control structure, the
computer does ___ until the variable P has value TRUE and
then moves on to the next instruction. The programmer is
free to insert any legal sequence of instructions in the ___,
knowing that the computer will execute those instructions un-
til the value of P is TRUE. This awesome ability of comput-
ers to execute instructions is one of the motivations behind
the semantic view of computational individuation.10 For
when people execute instructions, i.e., they do what the
instructions say to do, they do so because they understand
what the instructions say. By analogy, it is tempting to con-
clude that in some sense, computers respond to the semantic
properties of the instructions they execute, or at least instruc-
tions and the corresponding computational states of the
mechanism are individuated by their content. This temptation
is innocuous to the extent that one understands how comput-
ers execute instructions and specifies the relevant notion of

COMPUTATION WITHOUT REPRESENTATION

computational content accordingly; otherwise, to speak of
computers responding to semantic properties or of instruc-
tions being individuated by their content is misleading.11 So, I
will briefly explain how computers execute instructions.

In ordinary stored-program computers, instructions are en-
coded as binary strings (strings of bits). Each bit is physically
realized by a voltage level in a memory cell or some other
state capable of physically affecting the computer in the rele-
vant way. Before the processor of a computer can execute a
binary string written in a high-level programming language,
the computer must transform the string into a machine lan-
guage instruction, which the machine can execute. A machine
language instruction is a binary string that, when placed into
the appropriate register of a computer processor, causes the
computer’s control unit to generate a series of events in the
computer’s datapath. For example, the sequence of events
may include the transfer of binary strings from one register to
another, the generation of new strings from old ones, and the
placement of the new strings in certain registers.

The computer is designed so that the operations performed
by the computer’s processor (i.e., the control unit plus the da-
tapath) in response to a machine language instruction corre-
spond to what the instruction means in assembly language.
For instance, if the intended interpretation of an assembly
language instruction is to copy the content of register x into
register y, then the computer is designed so that when receiv-
ing a machine language encoding of that assembly language
instruction, it will transfer the content of register x into regis-
ter y. This feature of computers may be used to assign their
instructions (and some of their parts) an interpretation, to the
effect that an instruction asserts what its execution accom-
plishes within the computer. This may be called the internal
semantics of the computer.

Internal semantics is not quite semantics in the sense usu-
ally employed by philosophers. When philosophers say
‘semantics,’ they mean external semantics, that is, semantics
that relates a state to things other than its computational

GUALTIERO PICCININI

effects within a computer, including objects and properties in
the external world. Notice, however, that contents assigned to
a state by an external semantics need not be concrete objects
and properties in the environment; they may be numbers,
counterfactual events, phonemes, non-existent entities like
Aphrodite, etc.12

Internal semantics is no help to the supporters of the
semantic view of computational individuation, for they are
concerned with individuation by external semantic properties.
This is because the semantic view is largely motivated by
computational explanations of mental states and processes,
which are widely assumed to be individuated by their (exter-
nal) contents.

Internal semantics is fully determined by the functional
properties of program-controlled computers, independently of
any external semantics. This can be seen clearly by reflecting
on the semantics of high-level programming language instruc-
tions. For instance, the semantics assigned above to UNTIL
P TRUE DO ___ ENDUNTIL was ambiguous between an
internal and an external reading. As I said, the instruction
means to do ___ until the variable P has value TRUE. Doing
___ is a computational operation, so this component of the
interpretation is internal. P is a variable of the programming
language, which ranges over strings of symbols to be found
inside the computer � again, this is an internal content.
Finally, ‘TRUE’ may be taken to mean either true (the truth-
value), or the word ‘TRUE’ itself as written in the relevant
programming language (a case of self-reference).

When writing programs, it is convenient to think of
‘TRUE’ as referring to a truth-value. But for the purpose of
individuating the computation, the correct interpretation is
the self-referential one. For what a computer actually does
when executing the instruction is to compare the (implemen-
tations of) the two strings, the one that is the value of P and
the one that reads ‘TRUE’. All that matters for the individu-
ation of the computation is which letters compose the two
strings and how they are concatenated together. If they are

COMPUTATION WITHOUT REPRESENTATION

the same letters in the same order, the processor proceeds to
the next instruction; otherwise, it goes back to doing ___.
Whether either string (externally) means a truth-value, or
something else, or nothing, is irrelevant to determining which
state the computer is in and which operation it’s performing
for the purpose of explaining its behavior. In other words,
having an internal semantics does not entail having an exter-
nal semantics.

This is not to say that instructions and data, either at a high
level or at the machine language level, lack an external seman-
tics. Each element of the machine implementation of a high-le-
vel instruction has a job to do, and that job is determined at
least in part by the high-level instruction that it implements.
Besides its internal semantics, that high-level instruction may
well have a semantics that is, at least in part, external. By the
same token, each element of a machine language datum is a
component of the machine implementation of a high-level da-
tum, and that high-level datum typically has an external
semantics. It may be difficult or impossible to univocally
break down the external contents of high-level instructions
and data into external contents of machine language instruc-
tions and data, but this is only an epistemic limitation. As a
matter of fact, machine language instructions and data may
well have external semantic properties. This is perfectly com-
patible with the point at issue. The point is that the states of
computing mechanisms, including program-controlled com-
puters, do not have their external contents essentially � they
are fully individuated without appealing to their external
semantic properties.

Assigning instructions and data a semantics, either external
or internal, is indispensable to designing, programming,
using, and repairing computers, because that is the only way
for designers, programmers, users, and technicians to under-
stand what computers are doing or failing to do. But in an
explanation of computer instruction execution, a complex
instruction like UNTIL P TRUE DO ___ ENDUNTIL is a
string of letters, which will be encoded in the computer as a

GUALTIERO PICCININI

binary string, which will affect the computer’s processor in a
certain way. A computer is a powerful, flexible, and fascinat-
ing mechanism, and we may feel compelled to say that it
responds to the semantic properties of the instructions it exe-
cutes. But as I briefly argued, this kind of ‘computer under-
standing’ is exhaustively and mechanistically explained
without ascribing any external semantics to the inputs, inter-
nal states, or outputs of the computer. The case is analogous
to non-universal TMs, whose computational behavior is
entirely determined and uniquely individuated by the instruc-
tions that are ‘hardwired’ in their active component.

In summary, the functional view of computational individu-
ation holds that a program-controlled computer is a physical
system with special functional properties that are specified by
a certain kind of mechanistic explanation. Although for prac-
tical purposes the internal states of computers are usually as-
cribed content by an external semantics, this need not be the
case and is unnecessary to individuate their computational
states and explain their behavior.

The functional view is consistent with the non-semantic
view of computational causation but goes beyond it. It holds
that the identity conditions of computing mechanisms, their
states, and the functions they compute are completely deter-
mined by their (non-semantic) functional properties. Even in
the special case of program-controlled computers, where the
functional individuation of computational states gives rise to
an internal semantics, external semantics is not part of the
individuation of computational states. From the functional
view of computational individuation, it follows that computa-
tional descriptions are not ipso facto (external) semantic
descriptions. So, if the functional view is correct, the semantic
view of computational individuation is incorrect. From now
on, unless otherwise noted, by ‘semantics’ I will mean exter-
nal semantics, and by ‘content’ I will mean content ascribed
by an external semantics.

The functional view of computational individuation bears
some similarity to a view proposed by Egan (1992, 1995,

COMPUTATION WITHOUT REPRESENTATION

1999, 2003). Egan appears to reject the semantic view of com-
putational individuation, because she rejects the view, cham-
pioned by many philosophers, that the computational states
postulated by psychological theories are individuated by the
cognitive contents of those states (e.g., visual contents for the
states of visual mechanisms, auditory contents for the states
of auditory mechanisms, etc.). Instead, Egan argues that com-
putational states are individuated individualistically, i.e., by
properties that are shared by all physical duplicates of a
mechanism. But when Egan specifies how computational
states are individuated, she points to their ‘mathematical con-
tents’, namely the ‘mathematical’ functions whose domain
and range elements are denoted by the inputs and outputs of
the computations (Egan, 1995, p. 187; 2003, p. 96). Although
I agree with much of what Egan says, Egan’s view does not
capture the way computational states are individuated within
computability theory and computer science; hence, it should
be replaced by the functional view of computational individu-
ation. Egan’s view also faces an internal difficulty, which may
be resolved by resorting to a version of the functional view.

Egan’s mathematical contents behave differently from cog-
nitive contents in some types of counterfactual reasoning. A
salient difference is that mathematical contents � unlike cog-
nitive ones � are not dependent on the relations between a
mechanism and its environment. Under most views of mental
content, whether an organism is thinking about water de-
pends, inter alia, on whether there is H2O in her environment
(Putnam, 1975). But whether the same organism is thinking
about the number seven does not seem to depend on any-
thing in her environment. In this sense, mathematical con-
tents are shared by physical duplicates in a way that cognitive
contents (under most views of cognitive content) are not.

But there is a sense in which mathematical contents are no
more intrinsic to computing mechanisms than cognitive con-
tents. Mathematical contents are still contents � they are still
relational properties of states, which depend on the relations
between a mechanism and something else (numbers, sets, or

GUALTIERO PICCININI

whathaveyou). From a formal semantics perspective, there is
no principled difference between mathematical and cognitive
contents. Both can be assigned as interpretations to the states
of a mechanism, and both can be assigned to the mecha-
nism’s physical duplicates. It is certainly possible to assign
the same mathematical interpretation to all physical dupli-
cates of a computing mechanism, but in the same way, it is
equally possible to assign the same cognitive interpretation to
all physical duplicates of a computing mechanism.13 More-
over, just as internal states of the same mechanism may be gi-
ven different cognitive interpretations, it is well known that
the same set of symbolic strings may be given different math-
ematical interpretations. In this sense, mathematical contents
are shared by physical duplicates neither more nor less than
cognitive contents. If the latter are not individualistic enough
for Egan’s purposes, the former shouldn’t be either.

If someone wants to individuate computational states in a
rigorously individualistic way, she should drop the individua-
tion of computational states by their semantic properties �
cognitive or mathematical � altogether. She might opt for an
individualistic version of the functional view of computational
individuation: under a narrow construal of mechanistic expla-
nation, the functional properties of computing mechanisms
are individualistic in precisely the sense desired by Egan.14

I will not defend an individualistic version of the functional
view of computational individuation, however, because I am
skeptical of the narrow construal of mechanistic explanation.
I find a wide (non-individualistic) construal of mechanistic
explanation more plausible. For present purposes, it is impor-
tant to distinguish between wide individuation and individua-
tion based on wide content. Individuation based on wide
content is one type of wide individuation, but wide individua-
tion is a broader notion. Wide individuation appeals to the
relations between a mechanism and its context, relations
which may or may not be semantic. For my purposes, of
course, what is needed is wide individuation that does not ap-
peal to semantic relations.

COMPUTATION WITHOUT REPRESENTATION

Mechanisms have many intrinsic properties, only some of
which are functionally relevant. In order to know which
intrinsic properties of mechanisms are functionally relevant, it
may be necessary to consider the interaction between mecha-
nisms and their contexts.15 For instance, plants absorb and
emit many types of electromagnetic radiations, most of which
have little or no functional significance. But when radiation
within certain frequencies hits certain specialized molecules, it
helps produce photosynthesis � an event of great functional
significance. Without knowing which external events cause
certain internal events and which external effects those inter-
nal events have, it may be difficult or impossible to distinguish
the functionally relevant properties of a mechanism from the
irrelevant ones. As a consequence, scientific theories typically
individuate the functional properties of mechanisms widely.16

The same point applies to the functional properties of com-
puting mechanisms. As Harman (1988) points out, many phi-
losophers have assumed that computing mechanisms are
individuated purely individualistically (Putnam, 1967; Fodor,
1980; Stich, 1983). But this assumption is false. Concrete
computing mechanisms, like all other mechanisms, have many
intrinsic properties, only some of which are relevant to the re-
sults of their computations. For instance, most ordinary com-
puters would not work for very long without a fan, but the
fan is not a computing component of the computer, and
blowing air is not part of the computer’s computations.

As with any other mechanism, we need to distinguish the
properties of a computing mechanism that are functionally
relevant from the ones that are irrelevant. We also need to
distinguish the functional properties that are relevant to com-
putation from the irrelevant ones. In order to draw these dis-
tinctions, we need to know which of a computing mechanism’s
properties are relevant to its computational inputs and out-
puts and how they are relevant. In order to know that, we
need to know what the computational inputs and outputs of
the mechanism are. That, in turn, requires knowing how the
mechanism’s inputs and outputs interact with their context. In

GUALTIERO PICCININI

the next section, I will adapt an argument by Shagrir to sup-
port this conclusion. For now, I conclude that the functional
view of computing mechanisms may be better grounded on a
wide construal of functional properties.17

At this juncture, someone might worry that at least in the
case of computing mechanisms, wide functional individuation
and individuation by wide content are equivalent. For instance,
a wide function of an internal state might be to co-vary with an
external variable. Under some theories of content, this is the
same as representing that variable. If so, it may seem that wide
functional individuation is the same as individuation by wide
content, and that the functional account of computational indi-
viduation collapses into the semantic account. In response to
this worry, I have two points to make.

First, the functional properties that are relevant to compu-
tational individuation, even when they are wide, are not very
wide. They have to do with the normal interaction between a
computing mechanism and its immediate mechanistic context
via its input and output transducers. In the case of artificial
computing mechanisms, the relevant context is, on the one
hand, the relation between the forces exerted on input devices
(such as keyboards) and the signals relayed by input devices
to the computing components, and on the other hand, the
relation between the computing components’ outputs and the
signals released by the output devices. Those relations, to-
gether with the internal relations between components and
their activities, determine whether a computation is per-
formed by a mechanism and which computation it is.

By the same token, in the case of organisms, the wideness
of putative computational properties of nervous systems does
not even reach into the organisms’ environment; it only
reaches sensory receptors and muscle fibers, for that is enough
to determine whether a nervous system performs computa-
tions and which computations it performs. As a matter of
fact, the main piece of empirical evidence that was originally
employed by McCulloch and Pitts (1943) to justify the first
computational theory of mind was the all-or-none properties

COMPUTATION WITHOUT REPRESENTATION

of neural signals, and those properties were originally discov-
ered and identified to be functionally significant by studying
the interaction between neural signals and muscle fibers.18

Second, the extent to which wide functional properties are
the same as wide contents depends on which theory of con-
tent one adopts. In most of the literature on wide contents,
wide contents are largely ascribed by intuition, and theories
of content are tested by determining whether they agree with
the relevant intuitions. By contrast, under the functional view
of computational individuation, the functional properties that
are relevant to the computational individuation of a mecha-
nism are to be found by elaborating mechanistic explanations
under the empirical constraints that are in place within the
natural sciences. This establishes the computational identity
of a mechanism without appealing to any semantic intuitions.
Perhaps, under some theories of content, some wide semantic
properties will turn out to supervene on some computational
(or more generally, functional) properties. But this is not a
weakness of the functional view � it’s a strength. For under
the functional view, computational properties can be discov-
ered and individuated without appealing to semantic proper-
ties, thereby providing kosher naturalistic resources that may
be used in a theory of content.

The same point may be put in the following way. One
problem with naturalistic theories of content that appeal to
computational properties of mechanisms is that, when con-
joined with the semantic view of computational individuation,
they become circular. For such theories explain content (at
least in part) in terms of computation, and according to the
semantic view, computational states are individuated (at least
in part) by contents. The functional view breaks this circle:
computations are individuated by (somewhat wide) functions;
contents may then be explained (at least in part) in terms of
computations, without generating any circularity.19

The present argument in favor of the functional view of
computational individuation may be unpersuasive to some-
one firmly committed to the semantic view of computational

GUALTIERO PICCININI

individuation. She might prefer to use the semantic view of
computational individuation as a premise and conclude that
the functional view of computational individuation must be
incorrect. This would fly in the face of how computability
theorists and computer scientists individuate computing
mechanisms and their states. But the fact that philosophers
have maintained the semantic view of computational individ-
uation for decades in spite of computability theory and com-
puter design shows that she wouldn’t be deterred. To address
this possible reply, I will discuss arguments for the semantic
view of computational individuation.

3. AGAINST THE SEMANTIC VIEW OF COMPUTATIONAL

INDIVIDUATION

There are three main arguments on offer for the semantic
view of computational individuation. The first pertains di-
rectly to computing mechanisms and their states, and it goes
as follows:

3.1. Argument from the Identity of Computed Functions

(1) Computing mechanisms and their states are individu-
ated by the functions they compute.

(2) Functions are individuated semantically, by the ordered
couples Ædomain element, range elementæ denoted by the
inputs and outputs of the computation.

(3) Therefore, computing mechanisms and their states are
individuated semantically.

Variants of the argument from the identity of computed
functions may be found in the writing of several authors
(Dietrich, 1989; Smith, 1996; Shagrir, 1997, 1999; Peacocke,
1999).20

The argument from the identity of functions ignores that
when talking about computation, functions may be individu-
ated in two ways. One appeals to the set of the ordered cou-
ples Ædomain element, range elementæ denoted by the inputs

COMPUTATION WITHOUT REPRESENTATION

and outputs of the computation (e.g., {Æ1, 10æ, Æ10, 11æ, …},
where ‘1’, ‘10’, ‘11’, … denote the numbers 1, 2, 3, …). The
other individuates functions as the set of ordered couples Æin-
put type, output typeæ, where input and output types are real-
ized by the strings of digits that enter and exit the computing
mechanism (e.g., {Æ1, 10æ, Æ10, 11æ, …}, where ‘1’, ‘10’, ‘11’,
… denote inscriptions of types ‘1’, ‘10’, ‘11’, …). In other
words, functions can be defined either over entities such as
numbers, which may be the content of computational inputs
and outputs, or over entities such as strings of (suitably
typed) letters from an alphabet, which are the inputs and out-
puts themselves. Both ways of individuating functions are
important and useful for many purposes. Both can be used to
describe what is computed by a computing mechanism. The
relevant question is which of these ways of individuating
functions is relevant to individuating computational states
within a scientific theory of mechanism.

In light of the previous section, the function individuation
that is relevant to computational explanation is the one based
on strings. The other, semantic way of individuating func-
tions may be useful for many other purposes, including
explaining why people build computers the way they do and
why they use them, but it is irrelevant to explaining the
capacities of the mechanisms.

Given a functional description of a computing mechanism
that individuates the function being computed in terms of in-
put and output strings, one may ask how it is that that mech-
anism also computes the function Ædomain element, range
elementæ, defined over numbers or other entities. In order to
explain this, what is needed is a further fact: that the inputs
and outputs of the computation denote the elements of the
domain and range of the function. This is a semantic fact,
which relates functionally individuated inputs and outputs to
their content. Stating this semantic fact requires that we indi-
viduate the inputs and outputs of the computation indepen-
dently of their denotations. So, a non-semantic individuation

GUALTIERO PICCININI

of computational states is a prerequisite for talking about
their content.

Another problem with the argument from the identity of
computed functions is that using the semantic values of the
inputs and outputs does not individuate computing mecha-
nisms and their states as finely as we need when talking
about computing mechanisms, and it is hard to see what
other semantic properties should be added to the semantic
values in order to reach an adequate fineness of grain. Any
domain of objects (e.g., numbers) may be represented in
indefinitely many ways (i.e., notations). Any computable
function may be computed by indefinitely many algorithms.
Any algorithm may be implemented by indefinitely many
programs written in indefinitely many programming lan-
guages. Finally, any program may be executed by indefi-
nitely many computer architectures. Even within the same
programming language or computer architecture, typically
there are different ways of implementing the same algo-
rithm. So the semantically individuated function itself, or
even the function in combination with the algorithm,21 does
not individuate the computing mechanism and its states as
finely as we need. This way of individuating computational
states has the paradoxical consequence that mechanisms that
have different architectures, use different programming lan-
guages, and execute different programs that implement dif-
ferent algorithms (perhaps of different computational
complexity) and manipulate different notations, are ascribed
the same computational states only because they compute
the same semantically individuated function. To avoid this,
individuating functions in terms of input and output strings
is not enough. We should also allow other functional (non-
semantic) aspects of the computation, such as the program
and the architecture, to be part of the mechanistic explana-
tion that individuates the computing mechanism and its
computational states.

COMPUTATION WITHOUT REPRESENTATION

The second argument for the semantic view of computa-
tional individuation appeals to computational explanations of
mental processes.

3.2. Argument from the Identity of Mental States

(1) Computational states and processes are posited in
explanations of mental states and processes (e.g., infer-
ence).

(2) Mental states and processes are individuated by their
semantic properties.

(3) Therefore, computational states and processes are indi-
viduated by the semantic properties of the mental states
and processes they explain.

Variants of the argument from the identity of mental states
may be found in many places (the most explicit include Fodor,
1975; Pylyshyn, 1984; Burge, 1986; Peacocke, 1994a, 1999;
Wilson, 2004).22

Premise 1 is uncontroversial; it simply takes notice that
some scientific theories explain mental states and processes
computationally. Premise 2 has been challenged (e.g., by
Stich, 1983), but for the sake of the argument I will ignore
any concerns about whether content may be legitimately used
to individuate mental states for scientific purposes.

As appealing as the argument from the identity of mental
states may sound, it is a non sequitur. As Egan (1995) notes,
the only way the conclusion can be derived from the premises
is by assuming that explanantia must be individuated by the
same properties that individuate their explananda. This
assumption is at odds with our explanatory practices. The rel-
evant type of explanation is constitutive explanation, whereby
a property or capacity of a mechanism is explained in terms
of the functions and organization of its constituents. For
example, consider the explanation of digestion. The explanan-
dum, a certain type of state change of some organic sub-
stances, is individuated by the chemical properties of
substances before, during, and after they enter the stomach.

GUALTIERO PICCININI

Its explanans, which involves secretions from certain glands in
combination with the stomach’s movements, is individuated
by the activities of the stomach, its glands, and their secre-
tions. This example shows that the individuation of explanan-
tia independently of their explananda is an aspect of our
explanatory practices. There is no reason to believe that this
should fail to obtain in the case of explanations of mental
states and processes. And without the assumption that
explanantia must be individuated by the same properties that
individuate their explananda, the argument from the identity
of mental states doesn’t go through.23

In recent years, a subtle new argument for a weakened ver-
sion of the semantic view of computational individuation has
been formulated by Shagrir (2001). Here is a formulation,
using my terminology, of the thrust of Shagrir’s argument:

3.3. Argument from the Multiplicity of Computations:

(1) The same computing mechanism M implements multiple
(non-semantically individuated) computations C1, …, Cn

at the same time.
(2) For any task that M may perform, there is a unique Ci 2

{C1, …, Cn}, such that Ci alone explains M’s performance
of the task, and Ci is determined by the task performed
by M in any given context.

(3) Tasks are individuated semantically.
(4) Therefore, in any given context, Ci is individuated seman-

tically (in part).
(5) Therefore, in so far as computations explain the perfor-

mance of a task by a mechanism in any given context,
they are individuated semantically (in part).

Premise (1) appeals to the fact that the inputs, outputs, and
internal states of a mechanism can be grouped together in
different ways, so that different computational descriptions
apply to them. For instance, imagine a simple device that
takes two input digits and yields one output digit and whose

COMPUTATION WITHOUT REPRESENTATION

inputs and outputs may take three possible values (which
may be called 0, ½, and 1). And suppose that the outputs are
related to the inputs as follows:

The above is a bona fide computational description of our
device. Under this description, the device performs an averag-
ing task of sorts. Since this averaging task exploits all of the
functionally significant inputs and outputs of the device, I
will refer to it as the maximal task of the device, and to the
corresponding computation as the maximal computation.

If we group together and re-label our inputs and outputs,
we may find other computational descriptions. For instance,
we may group ‘0’ and ‘½’ together and call both of them 0,
or we may group ‘½’ and ‘1’ together and call both of them
1. In the first case, our device turns into what is ordinarily
called an AND gate, whereas in the second case, it turns into
an OR gate. As a consequence of this grouping and re-label-
ing, our device implements several computations at once: our
original averaging, the AND operation, the OR operation,
etc. These operations form our set of computations C1, …,
Cn mentioned in premise (1), all of which are implemented by
our device at the same time.24

In principle, our device could be used to perform different
tasks, each of which corresponds to one of the computations
implemented by the device. It could be used to perform its
maximal task (averaging) as well as a number of non-maximal

Inputs ! Output

0, 0 ! 0
0, ½ ! ½
½, 0 ! ½
0, 1 ! ½
1, 0 ! ½
½, ½ ! ½
½, 1 ! ½
1, ½ ! ½
1, 1 ! 1

GUALTIERO PICCININI

tasks (conjunction, disjunction, etc). But in any given context,
our device might be used to perform only one specific task.
For example, our device might be part of a larger device,
which uses it to perform conjunctions. Premise (2) points out
that in order to explain how our device performs a given task,
say conjunction, we must appeal to the relevant computa-
tional description, namely AND. So, the task performed by a
computing mechanism in a given context determines which
computational description is explanatory in that context.

Although premises (1) and (2) are true and suggestive, they
probably make little difference in most scientific contexts. For
in practice, computing mechanisms like our simple device
above are usually employed to perform their maximal task.
In engineering applications, it would be unnecessarily costly
and cumbersome to build a device with inputs and outputs of
three kinds but use it to perform tasks that require inputs
and outputs of only two kinds. In nature, it is unlikely that
natural selection would generate a process that can differenti-
ate between more possible inputs and outputs than it needs to
in order to carry out its task. Although it is common for the
same naturally occurring mechanism to perform different
tasks, usually each task is subserved by a different process
within the mechanism. And although some natural computa-
tional processes may have evolved from ancestors that re-
quired to differentiate more inputs and outputs than the
current process, this seems unlikely to be the most common
occurrence. So the possibilities mentioned in premises (1) and
(2) may not have great practical significance. Nevertheless, it
is philosophically useful to know what they entail about the
individuation of computation, so let us examine the rest of
the argument.

Premise (3) says that tasks are semantically individuated.
For instance, one of our device’s tasks, averaging, is defined
over quantities, which are the implicit referents of the inputs
and outputs of the device. Since, by (2), tasks determine
which computational description is explanatory in a given
context, (4) concludes that the computational identity of a

COMPUTATION WITHOUT REPRESENTATION

device in a given context is partially determined by semantic
properties. In other words, the computation that is explana-
tory in any given context is partially individuated semanti-
cally. Given that the argument does not depend on the
specific device or computational description, (5) is a universal
generalization of (4).

Before discussing the merits of the argument from the iden-
tity of computational tasks, notice that its conclusion is
weaker than the traditional semantic view of computational
individuation. For the argument begins by conceding that the
(multiple) computations implemented by a device are individ-
uated non-semantically. Semantic constraints only play a role
in determining which of those computations is explanatory in
a given context. As I pointed out above, it is likely that in
most contexts of scientific interest, computing mechanisms
perform their maximal task, so that semantic constraints are
unnecessary to determine which computation is explanatory.
If this is correct, and if the argument from the multiplicity of
computations is sound, then semantic constraints will play a
role in few, if any, practically significant contexts. It remains
to be seen whether the argument is sound.

The problem is with premise (3), and it is analogous to the
problem with premise (2) in the argument from the identity
of functions. The task of a computing mechanism is to com-
pute a certain function. As I pointed out above, functions
may be individuated semantically, and hence so may tasks.
But as I also pointed out above, functions may be individu-
ated non-semantically, and hence so may tasks. For the same
reasons given in the case of functions, the task description
that is relevant to individuating computing mechanisms and
their processes is non-semantic.

Shagrir’s reason for (3) seems to be that he works under a
narrow construal of functional properties. If functional prop-
erties are construed narrowly, then they are insufficient to
determine which task a mechanism is performing within a
context, and hence which computation is explanatory in that
context. It goes to Shagrir’s credit that he showed this to us.

GUALTIERO PICCININI

But the solution need not be an individuation of computations
based on content, for there is also the possibility � which I
advocated in section 2 � of a wide construal of functional
properties. Shagrir gives no reason to prefer a semantic indi-
viduation of computations to a wide functional individuation.
Provided that the interaction between a mechanism and its
context plays a role in individuating its functional (including
computational) properties, a (non-semantic) functional indi-
viduation of computational states is sufficient to determine
which task is being performed by a mechanism, and hence
which computation is explanatory in a context.

In order to know which of the computations that are
implemented by a computing mechanism is explanatory in a
context, we need to know the relevant relations between com-
putations and contexts. Therefore, we cannot determine
which computation is explanatory within a context without
looking outside the mechanism. I agree with Shagrir about
this, and also about the fact that interpreting computations �
describing computations semantically � is one way to relate
computations to context. But it’s not the only way: computa-
tions have effects on, and are affected by, their context. By
looking at which effects of which computations are function-
ally significant within a context, we can identify the computa-
tion that is explanatory within that context. Going back to
our example, suppose our device is a component of a larger
mechanism. By looking at whether the containing mechanism
responds differentially to a ‘0’, ‘½’, and ‘1’ or responds iden-
tically to two of them, we can determine which computa-
tional description is explanatory without needing to invoke
any semantic properties of the computations.

4. CONCLUSION

Existing arguments for the semantic view of computational
individuation fail. There is no reason to believe that compu-
tational states are individuated by their semantic properties.
Instead, computational states are individuated by their

COMPUTATION WITHOUT REPRESENTATION

functional properties, as specified by the mechanistic explana-
tion of the mechanism that bears those states.

The point is not that content has no role to play in formu-
lating and evaluating computational theories. It has many
important roles to play, at least under the most common
methodologies and assumptions. The point, rather, is that
computing mechanisms and their states have functional iden-
tity conditions, and that the functional properties of comput-
ing mechanisms are all that is needed to individuate
computing mechanisms and their states. Once computational
states are functionally individuated, interpretations may (or
may not) be assigned to them.

In both computer science and cognitive science, the most
perspicuous way of individuating tasks is often semantic. We
speak of computers doing arithmetic and of visual systems
inferring properties of the world from retinal images � these
are semantic characterizations of their tasks. But to those
semantic characterizations, there correspond an indefinite
number of possible non-semantic characterizations, which indi-
viduate different computational architectures, running different
programs, written in different programming languages, execut-
ing different algorithms. Before a semantic characterization of
a task can be mapped onto a particular mechanism, the seman-
tic characterization needs to be replaced by a functional, non-
semantic task description. Only the latter is what determines
the identity conditions of the mechanism qua computational.

A first corollary is that being a computational state does
not entail having semantic properties. This applies to artifacts
and natural systems alike. A computer can be truly described
computationally without ascribing content to it, and so can a
mind. This corollary is important in light of the tendency
among many theorists to construe the computational states
postulated by computational theories of mind (CTMs) as rep-
resentational. This is a mistake, which begs the question of
whether the computational states postulated by a theory of
mind have content.25 Perhaps they do, but perhaps � as Stich
(1983) pointed out some time ago � they don’t. Whether

GUALTIERO PICCININI

mental states have content should not be determined by the
metaphysics of computational states; it should be an indepen-
dent substantive question. A good account of computation
should not entail � as the semantic view of computational
individuation does � that one cannot be a computationalist
about mental states while also being an eliminativist about
their content.

If mental states have content, there is a separate question
of whether the contents of states posited by computational
theories match the contents ascribed by folk psychology. Per-
haps some or all internal computational states have contents
that match the folk psychological contents, as many compu-
tationalists believe (e.g., Fodor, 1987; Pylyshyn, 1984). Or
perhaps they don’t, as other computationalists maintain (e.g.,
Dennett, 1987, esp. chap. 5). These are substantive questions
that depend on the relationship between computational expla-
nations of mental states and capacities and theories of mental
content, and are at least in part empirical; they should not be
settled by philosophizing on the metaphysics of computation.
In light of these considerations, the functional view of com-
putational individuation has the appealing feature that it
leaves the questions of whether mental states have content
and what content they have independent of the question of
whether mental states are computational.

A second corollary relies on the premise that the possession
of semantic properties does not entail the possession of com-
putational properties. Since I’m not aware of any claim to the
contrary, I will not argue for this premise. The second corol-
lary is that being computational is logically independent of
having content, in the sense that it is possible to be a compu-
tational state without having content and vice versa. CTM
and the representational theory of mind (RTM) address inde-
pendent (orthogonal) problems. CTM should be formulated
and discussed without any theory of content, indeed without
even presupposing that minds have content, so as to avoid
getting entangled with the difficult issue of mental content.

COMPUTATION WITHOUT REPRESENTATION

And RTM should be formulated without presupposing that
mental states are computational.

My conclusions have no consequences on whether minds or
computers have content, whether mental and computational
content are the same, and whether mental content is reducible
to computational content. All I’m saying is that those ques-
tions must be answered by a theory of content, not by a the-
ory of computation or a CTM.

NOTES

1 A version of this paper was presented at the 2004 Eastern APA in Bos-
ton, MA. Thanks to my commentator, Larry Shapiro, and the audience,
especially Robert Cummins, for their helpful feedback. A previous ancestor
was presented at the 2002 Northwest Philosophy Conference, in Portland,
OR. Thanks to that audience and commentator, Anastasia Panagopoulos. I
also thank those who commented on previous versions of this paper, espe-
cially Robert Cummins, Frances Egan, Manuel Gatto, Peter Machamer,
Susan Schneider, Michael Rescorla, Oron Shagrir, and the anonymous ref-
erees. Finally, thanks to Jerry Fodor for correspondence on this topic.
I developed the view defended here mostly by thinking about explana-

tory practices in computer science in light of Carl Craver’s work on mech-
anistic explanation. I was also influenced by previous philosophical work
on computation, especially Jerry Fodor’s. Although the paper focuses
most explicitly on the differences with other views, there are also varying
degrees of continuity between the present view and earlier works on com-
putation, including Chalmers (1996), Cummins (1983), Egan (1995), Fo-
dor (1980), Glymour (1991), Horst (1999), Newell (1980), Pylyshyn
(1984), Shagrir (2001), and Stich (1983). Of course, I am solely responsible
for any errors contained in this paper.
2 Shagrir has pointed out to me that someone might maintain that com-
putational states are necessarily representations while denying that com-
putational states are individuated by their semantic properties, perhaps on
the grounds of an analogy with anomalous monism. According to anoma-
lous monism (Davidson, 1970), mental states are necessarily physical even
though they are not individuated by their physical properties; by the same
token, computational states might be necessarily representational even
though they are not individuated by their semantic properties. Since I’m
not aware of anyone who has taken this stance explicitly or any reason
for taking it, I will not discuss it further.

GUALTIERO PICCININI

3 Here is the most explicit formulation that I know of:
Suppose we start with the notion of a syntactic description of representa-

tions. I don’t think that this begs any questions because I don’t think
syntactic individuation requires semantic individuation. Roughly (at least
for the case of natural languages) it requires (i) an inventory of basic objects
(morphemes, as it might be) and (ii) a recursive definition of WFF (I think
all the recursions are on constituents; but I doubt that matters in the pres-
ent context). Finally, I assume that every computation is a causal sequence
of tokenings of such states.
Given that, there are two questions: 1. What distinguishes those of such

causal sequences that constitute computations from those that don’t? An-
swer, the former preserve semantic properties of the strings (paradigmati-
cally, they take one from true inputs to true outputs). This requires that
the tokened states have semantic interpretations (since, of course, only
what is semantically interpreted can be evaluated for truth). So, in that
sense, the representations in question are individuated by their semantic
properties inter alia. 2. What are the constraints on the causal processes
defined on such states? Answer, the effects of being in state S must be
fully determined by the syntactic properties of S (together, of course, with
the rules of state transition). That’s the sense in which computation is a
syntactic process.
So computations are syntactic processes defined over semantically inter-

preted arrays of representations. (Fodor, personal correspondence,
emphasis added.)
4 Supporters of the semantic view include Fodor (1998, p. 11), Pylyshyn
(1984, p. 30), and many others. They often disagree on whether the seman-
tic properties that individuate computational states are wide or narrow.
For a sample of this debate, cf. Bontly (1998), Burge (1986), Butler (1996),
Egan (1999), Segal (1989, 1991), Shagrir (2001), Shapiro (1997). Egan’s
view is significantly different from the others; I will discuss it below.
5 The best account of mechanistic explanation that I know of is due to
Craver (forthcoming). See also Bechtel and Richardson (1993), Machamer
et al. (2000), and Glennan (2002).
6 The locus classicus is Fodor (1980): ‘‘computational processes are both
symbolic and formal... What makes syntactic operations a species of formal
operations is that being syntactic is a way of not being semantic’’ (Fodor,
1980, p. 64). See also Newell 1980. The non-semantic view of computa-
tional causation has been challenged, typically on the grounds of the
semantic view of computational individuation (Dietrich, 1989; Peacocke,
1994a, 1999; Shagrir, 1999). Since I am arguing against the semantic view
of computational individuation, I need not address this challenge.
7 The reader who remains skeptical should consult the literature referred
to in the preceding footnotes.
8 For an extended argument to this effect, see Piccinini (forthcoming).

COMPUTATION WITHOUT REPRESENTATION

9 I took this example from Loop Programs, a simple but powerful pro-
gramming language invented by Robert Daley at the University of Pitts-
burgh.
10 For evidence of this, see Fodor (1968) and Piccinini (2004a).
11 For example, Dietrich (1989) argues that since computing mechanisms
respond to semantic properties of computational states, the non-semantic
view of computational causation should be rejected. The following consid-
erations explain why Dietrich’s conclusion is unwarranted.
12 Dennett (1987) uses the expressions ‘internal semantics’ and ‘external
semantics’ in a similar sense, and Fodor (1978) discusses some related issues.
Curiously, I devised and named this distinction before reading Dennett’s
work. The distinction between internal and external semantics should not
be confused with that between semantic internalism and semantic external-
ism, which pertain to the identity conditions of contents (specified by an
external semantics).
13 Of course, some of those interpretations may turn out to be intuitively
anomalous within a cognitive theory of an organism, in the sense that
they may fail to capture the way the organism relates to her actual envi-
ronment (as opposed to a possible environment). In computer science,
however, all that matters for interpreting computational states is the for-
mal adequacy of a candidate interpretation, that is, whether the states can
be systematically interpreted in one way or another. There is nothing intu-
itively anomalous about interpreting a computer on Twin Earth as com-
puting something about H2O, even if there is no H2O on Twin Earth. In
this respect, the semantics of artificial computing mechanisms is different
from that of organisms. Perhaps this is because the semantics of comput-
ing mechanisms is derived, whereas that of organisms is original.
14 This is individualism about computing mechanisms, not about psycho-
logical mechanisms. A narrow reading of the functional view of computa-
tional individuation is compatible with there being psychological
computing mechanisms that include features of both individuals and their
environment, as argued by Wilson (1994, 2004).
15 The context of a mechanism need not coincide with the environment
of an organism. If a mechanism is an internal component of a larger sys-
tem, its context is constituted by other relevant components of the system
and their activities.
16 A similar view is defended by Kitcher (1985), Harman (1988), and
Shapiro (1994). These authors do not refer to mechanistic explanation but
to functional explanation. I hope to address the relationship between
functional and mechanistic explanation elsewhere. Here, suffice it to say
that in my view, functional explanation is a kind of mechanistic explana-
tion, and the same considerations that favor wide functional explanation
over narrow functional explanation apply, more generally, to wide mechanistic
explanation over narrow mechanistic explanation.

GUALTIERO PICCININI

17 Again, this is compatible with Wilson’s (1994, 2004) wide computa-
tionalism, according to which a psychological computing mechanism
may spatially extend beyond the boundaries of an organism, but it is
also compatible with the negation of Wilson’s view. I have argued that
functional (including computational) properties are partially individuated
by their interactions between a mechanism and its context. I am officially
neutral on whether the components of psychological computing mecha-
nisms extend beyond the spatial boundaries of organisms.
18 For more on the discovery of the all-or-none properties of neural sig-
nals, see Frank (1994). For a detailed study of the considerations about
the physiology of neurons that are at the origin of the computational the-
ory of mind, cf. Piccinini (2004b).
19 For a detailed version of this argument, to the effect that the semantic
view of computational individuation should be abandoned so as to avoid
the circularity inherent in theories of content that appeal to computation,
see Piccinini (2004a).
20 Cf. Dietrich and Peacocke:
a correct account of computation requires us to attribute content to com-
putational processes in order to explain which functions are being com-
puted (Dietrich, 1989, p. 119).
There is no such thing as a purely formal determination of a mathemati-
cal function (Peacocke, 1999, p. 199).
21 Using algorithms in combination with semantically individuated func-
tions has been proposed in the literature as a way to individuate computa-
tional states (e.g., Pylyshyn, 1984). However, there is no accepted way to
individuate algorithms themselves other than non-semantically (Markov,
1960), and it is doubtful that any satisfactory account of the identity con-
ditions of algorithms in semantic terms is forthcoming (as argued by
Dean, 2002).
22 Cf. Burge and Peacocke:
There is no other way to treat the visual system as solving the problem
that the [computational] theory sees it as solving than by attributing
intentional states (Burge, 1986, pp. 28�29).
One of the tasks of a subpersonal computational psychology is to explain
how individuals come to have beliefs, desires, perceptions and other per-
sonal-level content-involving properties. If the content of personal-level
states is externally individuated, then the contents mentioned in a subper-
sonal psychology that is explanatory of those personal states must also be
externally individuated. One cannot fully explain the presence of an externally
individuated state by citing only states that are internally individuated.
On an externalist conception of subpersonal psychology, a content-involving
computation commonly consists in the explanation of some externally
individuated states by other externally individuated states (Peacocke,
1994b, p. 224).

COMPUTATION WITHOUT REPRESENTATION

23 For a similar reply to the argument from the identity of mental states,
see Egan (1995, p. 57ff).
24 Shagrir suggests another way in which a mechanism might implement
multiple computations, namely, by letting different sets of properties
(e.g., voltage and temperature) implement different computations (Shag-
rir, 2001, p. 375). But then either the different sets of properties correlate,
in which case the two computations are the same, or they don’t, in which
case we simply have two processes performing two different computations
within the same mechanism. (A mechanism may perform many activities
at the same time thanks to different internal processes, which may or may
not have some parts in common; in the case of this example, both activi-
ties are computations and both processes are computational.)
25 This is true only under the assumption, almost universally shared
among supporters of the semantic view of computational individuation,
that computational states are individuated by the same contents that indi-
viduate the mental states realized, in whole or in part, by those computa-
tional states. If one rejects that assumption, then the semantic view of
computational individuation is compatible with intentional eliminativism.
But if one rejects that assumption, the semantic view of computational
individuation ceases to have any significant positive motivation.

REFERENCES

Bechtel, W. and Richardson, R.C. (1993): Discovering Complexity: Decom-
position and Localization as Scientific Research Strategies, Princeton, NJ:
Princeton University Press.

Bontly, T. (1998): �Individualism and the Nature of Syntactic States�, British
Journal for the Philosophy of Science 49, 557�574.

Burge, T. (1986): �Individualism and Psychology�, Philosophical Review 95,
3�45.

Butler, K. (1996): �Content, Computation, and Individuation in Vision
Theory�, Analysis 56, 146�154.

Chalmers, D.J. (1996): �Does a Rock Implement Every Finite-State
Automaton?�, Synthese 108, 310�333.

Copeland, B.J. (1996): �What is Computation?�, Synthese 108, 224�359.
Crane, T. (1990): �The Language of Thought: No Syntax Without
Semantics�, Mind and Language 5(3), 187�212.

Craver, C. (forthcoming): Explaining the Brain, Oxford University Press.
Cummins, R. (1983): The Nature of Psychological Explanation, Cambridge,
MA: MIT Press.

Davidson, D. (1970): ‘Mental Events. Experience and Theory in L. Foster and
J.W. Swanson’, Amherst,MA,University ofMassachusetts Press. Reprinted
in Davidson, Essays on Actions and Events. Oxford, Clarendon Press, 1980.

GUALTIERO PICCININI

Dean, W. (2002): What Algorithms Could Not Be. In Proceedings of the
Computing and Philosophy Conference, Pittsburgh, PA.

Dennett, D.C. (1987): The Intentional Stance, Cambridge, MA: MIT Press.
Dietrich, E. (1989): �Semantics and the Computational Paradigm in
Cognitive Psychology�, Synthese 79, 119�141.

Egan, F. (1992): �Individualism, Computation, and Perceptual Content�,
Mind 101(403), 443�459.

Egan, F. (1995): �Computation and Content�, Philosophical Review 104,
181�203.

Egan, F. (1999): �In Defence of Narrow Mindedness�, Mind and Language
14(2), 177�194.

Egan, F. (2003): ‘Naturalistic Inquiry: Where Does Mental Representation
Fit in?’, in L.M. Antony and N. Hornstein (eds.), Chowsky and His
Critics, Malden: Blackwell, pp. 89�104.

Fodor, J.A. (1968): �The Appeal to Tacit Knowledge in Psychological
Explanation�, Journal of Philosophy 65, 627�640.

Fodor, J.A. (1975): The Language of Thought, Cambridge, MA: Harvard
University Press.

Fodor J.A. (1978): ‘Tom Swift and His Procedural Grandmother’,
Cognition 6, 229�247.

Fodor J.A. (1980): ‘Methodological Solipsism Considered as a Research
Strategy in Cognitive Psychology’, Behavioral and Brain Sciences 3(1),
63�109.

Fodor J.A. (1981): ‘The Mind�Body Problem’, Scientific American 244
(January 1981). Reprinted in Heil, J. (ed.) (2004a). Philosophy of Mind: A
Guide and Anthology, Oxford: Oxford University Press, pp. 168�182.

Fodor, J.A. (1987): Psychosemantics, Cambridge, MA: MIT Press.
Fodor, J.A. (1998): Concepts, Oxford: Clarendon Press.
Frank, R. (1994): �Instruments, Nerve Action, and the All-or-None
Principle�, Osiris 9, 208�235.

Glennan, S. (2002): �Rethinking Mechanistic Explanation�, Philosophy of
Science 69, 5342�5353.

Glymour, C. (1991): ‘Freud’s Androids’, in J. Neu (ed.), The Cambridge
Companion to Freud, Cambridge: Cambridge University Press.

Harman G. (1988): ‘Wide Functionalism’, in S. Schiffer and S. Steele (eds.),
Cognition and Representation, Boulder: Westview, pp. 11�20.

Horst, S.W. (1996): Symbols, Computation, and Intentionality: A Critique of
the Computational Theory of Mind, Berkeley, CA: University of California
Press.

Horst, S. (1999): �Symbols and Computation�, Minds and Machines 9(3),
347�381.

Jacquette D. (1991): ‘The Myth of Pure Syntax’, in L. Albertazzi and R. Poli
(eds.), Topics in Philosophy and Artificial Intelligence, Bozen: Istituto
Mitteleuropeo di Cultura, pp. 1�14.

COMPUTATION WITHOUT REPRESENTATION

Kitcher, P. (1985): �Narrow Taxonomy and Wide Functionalism�, Philos-
ophy of Science 52(1), 78�97.

Machamer, P.K., Darden, L. and Craver, C. (2000): �Thinking About
Mechanisms�, Philosophy of Science 67, 1�25.

Machtey, M. and Young, P. (1978): An Introduction to the General Theory of
Algorithms, New York: North Holland.

Markov, A.A. (1960 [1951]): �The Theory of Algorithms�, American
Mathematical Society Translations, Series 2 15, 1�14.

Marr, D. (1982): Vision, New York: Freeman.
McCulloch, W.S. and Pitts, W.H. (1943): �A Logical Calculus of the Ideas
Immanent in Nervous Activity�, Bulletin of Mathematical Biophysics 7,
115�133.

Newell, A. (1980): �Physical Symbol Systems�, Cognitive Science 4, 135�183.
Peacocke, C. (1994a): �Content, Computation, and Externalism�, Mind and
Language 9, 303�335.

Peacocke C. (1994b): ‘Content’, in S. Guttenplan (ed.), A Companion to the
Philosophy of Mind (pp. 219�225), Oxford: Blackwell.

Peacocke, C. (1999): �Computation as Involving Content: A Response to
Egan�, Mind and Language 14(2), 195�202.

Piccinini, G. (2004a): �Functionalism, Computationalism, and Mental
Contents�, Canadian Journal of Philosophy 34(3), 375�410.

Piccinini, G. (2004b): �The First Computational Theory of Mind and Brain:
A Close Look at McCulloch and Pitts’s ‘Logical Calculus of Ideas
Immanent in Nervous Activity’�, Synthese 141(2), 175�215.

Piccinini, G. (forthcoming): ‘Computational Modeling vs. Computational
Explanation: Is Everything a Turing Machine, and Does It Matter to the
Philosophy of Mind?’ Australasian Journal of Philosophy.

Putnam, H. (1967): Psychological Predicates. Art, Philosophy, and Religion,
Pittsburgh, PA: University of Pittsburgh Press.

Putnam, H. (1975): ‘The Meaning of ‘‘Meaning’’’, in K. Gunderson (ed.),
Language, Mind and Knowledge, Minneapolis: University of Minnesota
Press. Reprinted in Putnam, H. (1975): Mind, Language and Reality:
Philosophical Papers, Vol. 2. (pp. 215�271) Cambridge, UK: Cambridge
University Press.

Pylyshyn, Z.W. (1984): Computation and Cognition, Cambridge, MA: MIT
Press.

Scheutz, M. (1999): �When Physical Systems Realize Functions�, Minds and
Machines 9, 161�196.

Searle, J.R. (1980): �Minds, Brains, and Programs�, The Behavioral and Brain
Sciences 3, 417�457.

Searle, J.R. (1992): The Rediscovery of the Mind, Cambridge, MA: MIT
Press.

Segal, G. (1989): �Seeing What is Not There�, Philosophical Review 98,
189�214.

GUALTIERO PICCININI

Segal, G. (1991): �Defence of a Reasonable Individualism�, Mind 100,
485�493.

Shagrir, O. (1997): �Two Dogmas of Computationalism�, Minds and
Machines 7(3), 321�344.

Shagrir, O. (1999): �What is Computer Science About?�, The Monist 82(1),
131�149.

Shagrir, O. (2001): �Content, Computation and Externalism�,Mind 110(438),
369�400.

Shapiro, L.A. (1994): �Behavior, ISO Functionalism, and Psychology�,
Studies in the History and Philosophy of Science 25(2), 191�209.

Shapiro, L. (1997): �A Clearer Vision�, Philosophy of Science 64, 131�153.
Smith, B.C. (1996): On the Origin of Objects, Cambridge, MA: MIT Press.
Stich, S. (1983): From Folk Psychology to Cognitive Science, Cambridge,
MA: MIT Press.

Wells, A.J. (1998): �Turing’s Analysis of Computation and Theories of
Cognitive Architecture�, Cognitive Science 22(3), 269�294.

Wilson, R.A. (1994): �Wide Computationalism�, Mind 103, 351�372.
Wilson, R.A. (2004): Boundaries of the Mind: The Individual in the Fragile
Sciences, Cambridge, UK: Cambridge University Press.

Department of Philosophy
University of Missouri � St. Louis
599 Lucas Hall (MC 73), 1 University Blvd.
St. Louis, MO 63121-4400
USA
E-mail: piccininig@umsl.edu

COMPUTATION WITHOUT REPRESENTATION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

