HCN in GV Tau

Emily Sudholt
Advisor Dr. Erika Gibb
What makes Earth so special?

http://www.nature.com/nature/journal/v473/n7348/images/473460a-f1.2.jpg

Big Picture

- What makes Earth so special?
- Where do the necessary ingredients come from? – C, H, O, N
• What makes Earth so special?
• Where do the necessary ingredients come from? – C, H, O, N
• What happened during the formation of the solar system?
Big Picture

• What makes Earth so special?
• Where do the necessary ingredients come from? – C, H, O, N
• What happened during the formation of the solar system?
 – physical mixing and changes in chemistry over time
Keck II 10-meter telescope
Mauna Kea, HI

NIRSPEC Near Infrared Echelle Spectrograph

February 17 - 18, 2010
This Research

- GV Tau resembles early stages of this solar system.
• GV Tau resembles early stages of this solar system.
This Research

• GV Tau resembles early stages of this solar system.

• Looking for water, HCN and other simple organics.
This Research

• GV Tau resembles early stages of this solar system.
• Looking for water, HCN and other simple organics.
• Big changes over short time scales.
Method
Method
<table>
<thead>
<tr>
<th>Wavelength (µm)</th>
<th>3.016</th>
<th>3.012</th>
<th>3.007</th>
<th>3.003</th>
<th>2.998</th>
<th>2.994</th>
<th>2.989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux Density</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Method

![Graph showing wavelength and flux density relationship](image)
Method
Method

Measured Spectrum
Solar atmospheric model
Method

Measured Spectrum
Solar atmospheric model
Method

Measured Spectrum
Solar atmospheric model
Method

Wavelength (µm) 3.016 3.012 3.007 3.003 2.998 2.994 2.989

Flux Density

Measured Spectrum
Solar atmospheric model
Method

Wavelength 3.016 3.012 3.007 3.003 2.998 2.994 2.989
µm

Flux Density

Frequency cm\(^{-1}\)

Measured Spectrum
Solar atmospheric model
Method

- Boltzmann Distribution

\[\frac{N_i}{N} = \frac{g_i \exp(-E_i/kT)}{\sum g_i \exp(-E_i/kT)} \]
Method

• Boltzmann Distribution

\[\frac{N_i}{N} = \frac{g_i \exp\left(-\frac{E_i}{kT}\right)}{\sum g_i \exp\left(-\frac{E_i}{kT}\right)} \]

• Algebra

\[\ln\left(\frac{N}{(2J''+1)}\right) = (1/T)E \]
Method

• Boltzmann Distribution

\[
\frac{N_i}{N} = \frac{g_i \exp(-E_i/kT)}{\sum g_i \exp(-E_i/kT)}
\]

• Algebra

\[
\ln\left(\frac{N}{(2J''+1)}\right) = \frac{1}{T}E_y
\]
Method

- Boltzmann Distribution
 \[\frac{N_i}{N} = \frac{g_i \exp(-E_i/kT)}{\sum g_i \exp(-E_i/kT)} \]
- Algebra
 \[\ln\left(\frac{N}{(2J^"+1)}\right) = \left(\frac{1}{T}\right)E_{yx} \]
Method

- **Boltzmann Distribution**
 \[
 \frac{N_i}{N} = g_i \exp\left(-\frac{E_i}{kT}\right) / \sum g_i \exp\left(-\frac{E_i}{kT}\right)
 \]

- **Algebra**
 \[
 \ln\left(\frac{N}{(2J^"+1)}\right) = \left(\frac{1}{T}\right)E
 \]
 \[
 y = m \times x + b
 \]
 \[
 m^{-1} = T
 \]
Results (preliminary)

- \(\frac{1}{0.00130} = 764K \)

\[y = -0.0013083x + 33.9673942 \]
Results (preliminary)

- $\frac{1}{0.00130} = 764K \quad T \sim 460K$
Results

• $T \sim 460K$
• Doppler shift: $55 \pm 3 \text{ km/s}$
Results

• $T \sim 460\text{K}$
• Doppler shift: $55\pm3\ \text{km/s}$

Still need to...

• Subtract HCN
• Identify other organics
Discussion

- 2006 $T = (100-200K)$ Gibb et al. 2006
- 2010 $T \sim 760K$
Discussion

- 2006 $T=(100-200K)$ Gibb et al. 2006
- 2010 $T \sim 760K$
- More material overall
Questions

• Is the change in T due to the larger sample?
Questions

• Is the change in T due to the larger sample?
 – Lines $\sim 3200\text{cm}^{-1}$ would not be excited at 200K.
Questions

- Is the change in T due to the larger sample?
 - Lines ~ 3200 cm$^{-1}$ would not be excited at 200K
- Is this the same region of the disk?
Questions

• Is the change in T due to the larger sample?
 – Lines ~ 3200 cm$^{-1}$ would not be excited at 200K

• Is this the same region of the disk?
 – If the disk is warped, we may be looking at a different layer.
Acknowledgements

- NASA Missouri Space Grant Consortium
- National Science Foundation
- Dr. Erika Gibb
- Graduate Students Kari Wojtkowski and Logan Brown.