
J Sched (2009) 12: 281–298
DOI 10.1007/s10951-008-0079-3

Scheduling projects with multi-skilled personnel by a hybrid
MILP/CP benders decomposition algorithm

Haitao Li · Keith Womer

Received: 1 May 2007 / Accepted: 4 July 2008 / Published online: 3 September 2008
© Springer Science+Business Media, LLC 2008

Abstract We study an assignment type resource-con-
strained project scheduling problem with resources being
multi-skilled personnel to minimize the total staffing costs.
We develop a hybrid Benders decomposition (HBD) algo-
rithm that combines the complimentary strengths of both
mixed-integer linear programming (MILP) and constraint
programming (CP) to solve this NP-hard optimization prob-
lem. An effective cut-generating scheme based on temporal
analysis in project scheduling is devised for resolving re-
source conflicts. The computational study shows that our
hybrid MILP/CP algorithm is both effective and efficient
compared to the pure MILP or CP method alone.

Keywords Resource-constrained project scheduling ·
Multi-skilled personnel · Hybrid MILP/CP algorithms ·
Benders decomposition

1 Introduction

Scheduling and assignment of multi-skilled personnel to
perform a project is of practical importance, as cross-
training is becoming an viable practice to save operations
costs and to justify technology investment in many organi-
zations, e.g., call centers (Aksin et al. 2006). We consider
the following project scheduling problem with multi-skilled
personnel as resource constraints. A project consists of a
set of tasks which must be completed by a given deadline.

H. Li (�) · K. Womer
College of Business Administration, University of Missouri—
St. Louis, One University Blvd., St. Louis, MO 63121, USA
e-mail: lihait@umsl.edu

K. Womer
e-mail: womerk@umsl.edu

Generalized temporal constraints include due dates, min-
imum and maximum time lags. (A precedence constraint
can be viewed as a special case of a minimum time lag
constraint.) The project involves a set of skills. Each task
may require multiple skills simultaneously in order for the
task to progress. Each skill requires one individual selected
from a pool of personnel that possess the skill. An individ-
ual may be able to perform multiple skills, but only one at
a time. The assigned workload for each person cannot ex-
ceed the individual’s maximum workload capacity during
the scheduling horizon. The objective is to minimize the
staffing costs subject to the generalized temporal relations,
resource constraints, and the deadline on the project com-
pletion time (makespan). As a generalization of the single-
mode resource constrained project scheduling (RCPSP), the
project scheduling problem with multi-skilled personnel is
strongly NP-hard.

We develop a hybrid mixed-integer linear programming
(MILP) and constraint programming (CP) solution approach
relying on the classical Benders decomposition (Benders
1962) for handling complex mixed-integer programs. The
original project scheduling problem with multi-skilled per-
sonnel is decomposed into a relaxed master problem (RMP)
containing only the assignment variables and constraints,
and a feasibility subproblem containing only the scheduling
variables and constraints. CP is used for solving the schedul-
ing subproblem to infer “cuts” that are added iteratively into
the RMP to exclude infeasible assignments. MILP methods
such as branch–and–bound and branch–and–cut are used to
solve the master problem. Such a hybrid Benders decom-
position (HBD) framework was first proposed by Jain and
Grossmann (2001) to solve a class of scheduling problem
similar to the open-shop multi-purpose machine (OMPM,
Brucker 2001) scheduling problem, where temporal con-
straints are restricted to release- and due-date constraints

mailto:lihait@umsl.edu
mailto:womerk@umsl.edu

282 J Sched (2009) 12: 281–298

and only the general “no-good” cuts are generated during the
solving process. Due to the generality and complexity of our
proposed problem, we devise a cut-generating scheme based
on temporal analysis in project scheduling to establish a link
between the assignment master problem and scheduling sub-
problem. This insight is the key to the practical effectiveness
and efficiency of our algorithm.

In general, the model and solution approach presented
in this paper can be used in two ways. First, with the per-
sonnel’s skill-mix given, the model optimizes the short-
term assignment and scheduling decisions for accomplish-
ing projects. Second, with the personnel’s skill-mix un-
known, the model can be used to obtain an optimal skill-
mix of personnel for planning decisions in the intermediate-
term. We refer to Li and Womer (2006a) for an application
of determining the optimal crew composition and reducing
crew size.

The paper is organized as follows. Section 2 introduces
the project scheduling problem with multi-skilled person-
nel and presents its MILP formulation. Section 3 provides
an introduction to constraint programming and surveys the
hybrid MILP/CP approaches in the current literature. In
Sect. 4, we develop our hybrid MILP/CP Benders decompo-
sition algorithm for solving the proposed problem. Section 5
presents the computational results. In Sect. 6, we examine
the relationship between our model/algorithm and planning
problems. Section 7 gives conclusions and discusses future
research opportunities.

2 Project scheduling with multi-skilled personnel

In this section, we first describe the project scheduling prob-
lem with multi-skilled personnel and provide an illustrative
example. We then present MILP formulation of the problem
which our decomposition algorithm depends on. Additional
remarks are made on the related models and past work.

2.1 Problem description

We let J be the set of tasks in the project, K be the set of
relevant skills and S the personnel set required for executing
the project. The set of skills required by task j is denoted
by Kj . The set of people who are able to perform skill k is
represented by Sk . Each skill must be assigned to one person
who is able to perform that skill. Each task j has a constant
processing time pj . The minimum delay between task j and
j ′ is δjj ′ , i.e., task j ′ cannot start until δjj ′ time units after
j starts. The due date for task j is dj . There is a work load
capacity of ws for each individual s ∈ S. The deadline on the
makespan of the project is T̄ . The objective is to minimize
the total staffing costs to perform the project given a salary
of cs paid to an individual s ∈ S. We additionally make the
following assumptions:

(A1) Simultaneous skill requirement: the required skills
must be present simultaneously for a task to progress.

(A2) Single skill performance: personnel are treated as
unary resources, meaning an individual can only per-
form one skill at each time point.

(A3) A task cannot be interrupted, i.e., no preemption is al-
lowed.

(A4) Setup times are not considered explicitly.

We present a numerical example to illustrate the project
scheduling problem with multi-skilled personnel. The soft-
ware development department in a small firm faced a
scheduling problem involving skilled labor. In the past, the
department operated as a job shop with projects (jobs) ar-
riving at irregular intervals with varying work requirements.
But the department supervisor soon found it necessary to
remodel the operational process to improve efficiency. Six
categories of skills are needed for the department members:
programming, algorithms, mathematical modeling, data-
base, systems analysis, and quality control. Staff members
in the department are all cross-trained and possess multi-
ple skills. But an individual can only perform one skill at
one time point. Projects arrived with varying requirements
for skills and could be broken down into subtasks. Table 1
outlines members in the department and their skill-mix.

An upcoming project is to develop software for the ABC
Company. It can be broken down into five tasks, each of
which requires a specific set of skills simultaneously for the
task to progress. The skill requirements of the project are
presented in Table 2.

Additional descriptions of the tasks are provided below:

(J1) Problem identification. It defines the problem faced by
the client while considering the technical capacity of
the developing group.

(J2) Model development. It sets up the underlying mathe-
matical programming model for identified optimization
problem.

(J3) Algorithm design. It develops algorithms for solving
the proposed model.

(J4) GUI design. It designs a user-friendly interface allow-
ing easy accessibility.

(J5) Testing. It includes testing and debugging the applica-
tion software to assure quality.

Table 3 gives the processing time of each task.
Considering the technical requirements among these

tasks, the department supervisor believed that project make-
span could be significantly shortened if generalized tem-
poral constraints are introduced in addition to the current
simple precedence relations as in the job shop scheduling
environment. This is achieved by allowing simultaneously
executions of some tasks (e.g., the minimal time lags). The
temporal constraints he can think of are listed below:

J Sched (2009) 12: 281–298 283

Table 1 Department members
and their skill-mix Members Skills

Programming Algorithms Mathematical Database System Quality

modeling analysis control

S1 √ √ √ √ √
S2 √ √ √ √
S3 √ √ √ √
S4 √ √
S5 √ √ √ √ √
S6 √ √ √
S7 √ √ √
S8 √ √ √ √
S9 √ √ √

Table 2 Skill requirements of
the subtasks Tasks Skills

Programming Algorithms Mathematical Database System Quality

modeling analysis control

J1 √ √
J2 √ √ √
J3 √ √ √
J4 √ √ √
J5 √ √ √ √

Table 3 Processing times of the subtasks (in weeks)

Task J1 J2 J3 J4 J5

Processing time 4 5 4 6 8

(i) Model Development can only start at least 2 weeks af-
ter Problem Identification starts. (At least two weeks
after Problem Identification starts, some initial feed-
back can be delivered to the following task (model
development), allowing it to start right away, with-
out necessarily waiting until the Problem Identifica-
tion task finishes.)

(ii) Model Development must precede GUI design.
(iii) Algorithm Design can only start at least 3 weeks after

Model Development starts.
(iv) GUI design must precede Testing.
(v) Algorithm design must precede Testing.

(vi) Problem Identification must be finished within 7 weeks
after the project starts.

(vii) Model Development must be finished within 14 weeks
after the project starts.

(viii) The entire project must be completed within 26 weeks
after the project starts.

Furthermore, the workload capacity of each individual is
given in Table 4. We also assume that they have the same
salary.

Table 4 Workload capacity of each individual (in weeks)

Personnel S1 S2 S3 S4 S5 S6 S7 S8 S9

Capacity 22 26 26 20 25 26 26 25 26

The supervisor’s decision problem consists of finding a
schedule for all the tasks and assignments of personnel to
tasks/skills so that the total staffing costs for the incoming
project is minimized.

An optimal solution to the above problem is illustrated
in Fig. 1. It can be observed that the project will be com-
pleted within the deadline of 26 weeks and all the temporal
constraints have been satisfied. The Gantt chart also shows
the assignment (staffing) decisions. Notice that only 5 peo-
ple are needed in the least-cost solution while satisfying all
the task-skill requirements and personnel-skill constraints.

2.2 MILP formulation

We define the following decision variables:

• zs = 1, if and only if s is selected to perform the project,
∀s ∈ S.

• xjks = 1, if and only if s is assigned to skill k in task j,

∀j ∈ J , k ∈ Kj , s ∈ Sk.

• tj ≥ 0, the starting time of task j, ∀j ∈ J.

284 J Sched (2009) 12: 281–298

Fig. 1 Gantt chart of an optimal
solution to the example problem

• yjj ′ = 1, if and only if task j precedes j ′, ∀(j, j ′) ∈
J × J .

The MILP formulation of the project scheduling problem
with multi-skilled personnel can be written as:

min
∑

s∈S

cszs (1)

subject to:
∑

s∈Sk

xjks = 1, ∀j ∈ J, k ∈ Kj ; (2)

∑

k∈Kj

xjks ≤ 1, ∀j ∈ J, s ∈ S; (3)

∑

j∈J

∑

k∈Kj

pjxjks ≤ wszs, ∀s ∈ S; (4)

tj ′ − tj ≥ δjj ′ , ∀(j, j ′) ∈ J × J ; (5)

tj + pj ≤ min{dj , T̄ }, ∀j ∈ J ; (6)

yjj ′ + yj ′j ≥ xjks + xj ′k′s − 1,

∀ ordered (jk, j ′k′), ∀s ∈ S; (7)

tj ′ ≥ tj + pj − M(1 − yjj ′), ∀j �= j ′; (8)

zs, xjks, yjj ′ ∈ {0,1};
tj ≥ 0.

The objective function (1) minimizes the total staffing
costs for executing the project. Constraints (2) through (4)
model the assignment aspect of the problem. Constraint (2)
states that each skill in a task requires one person who pos-
sesses that skill. Constraint (3) enforces that no individual is
assigned to more than one skill in the same task due to as-
sumptions (A1) and (A2). Constraint (4) ensures that the to-
tal assigned workload of each person cannot exceed his/her
workload capacity. Constraints (5) through (8) take care of
the generalized temporal relations, i.e., the scheduling as-
pect of the problem. When δjj ′ ≥ 0, constraint (5) repre-
sents a minimum time lag between task j and j ′; when
δjj ′ < 0, (5) represents a maximum time lag between task

j ′ and j ; when δjj ′ = pj , (5) reduces to a precedence con-
straint. Constraint (6) satisfies the due date of each task as
well as the deadline on the makespan. Constraint (7) states
the logic relationship between sequencing and assignment
variables, i.e., if two tasks are assigned with the same person
then these two tasks cannot overlap (one sequencing relation
must be determined) due to assumption (A2). Constraint (8)
is the classical big-M formulation in disjunctive program-
ming to define the sequencing variables. For a two-layer re-
source structure to characterize the problem, we refer to Li
and Womer (2006b).

2.3 Additional remarks

The project scheduling problem with multi-skilled per-
sonnel studied in this paper is a generalization of the
single-mode resource-constrained project scheduling prob-
lem (RCPSP) by allowing each task to be performed in mul-
tiple ways. We refer to Brucker et al. (1999) for a survey
of various RCPSP models. It also belongs to the assign-
ment type RCPSP (Drexl et al. 1998) due to the presence
of both the assignment and sequencing variables. It is sim-
ilar to the multi-mode RCPSP in that each task has mul-
tiple ways (modes) to be performed. To be specific, for
task j there are

∏
k∈Kj |Sk| ways to be considered, which

makes the problem size increase explosively if modeled by
a standard multi-mode RCPSP. It is also an extension of the
multi-purpose machine scheduling problem (MPM, Brucker
2001), due to the presence of the generalized temporal con-
straints (5) in addition to the usual precedence constraints
in the classical machine scheduling problems. This paper
extends the work of Li and Womer (2006b) by minimizing
the total staffing cost instead of the number of selected per-
sonnel. This is not a trivial generalization; we will show in
Sect. 3.2 that the Skill-Level Based Decomposition (SLBD)
algorithm proposed by Li and Womer (2006b) will not be
able to handle the objective function considering the cost of
selecting each individual.

Other work on project scheduling problems with multi-
skilled personnel include Focacci et al. (2000), Bellenguez
and Neron (2004) and Neron et al. (2006). Their models,
however, treat a set of personnel merely as unary resources,

J Sched (2009) 12: 281–298 285

while the capacity associated with each individual was not
considered. In addition, temporal constraints in their stud-
ies are restricted to precedence constraints, i.e., minimum or
maximum time lag is not considered. Moreover, they all seek
to minimize the project makespan instead of cost-related ob-
jective functions.

3 CP-based hybrid approaches

3.1 Constraint programming

Constraint programming is the study of computational sys-
tems based on constraints. It originated in the Artificial In-
telligence areas that investigate the Constraint Satisfaction
Problem (CSP, Tsang 1993) and Logic Programming (Van
Hentenryck 1999). The main solving technologies of CP in-
clude constraint propagation and search. The basic idea of
constraint propagation is that when a variable’s domain is
modified, the effects of this modification are then commu-
nicated to any constraint that interacts with that variable.
In other words, the domain reduction algorithm modifies
the domain of all the variables in that constraint, given the
modification of one of the variables in that constraint. We
refer to Tsang (1993) for a detailed description of various
general-purpose constraint propagation algorithms and Bap-
tiste et al. (2001) for efficient constraint propagation algo-
rithms for scheduling problems. The domain of each vari-
able in an optimization problem can be reduced through
constraint propagation. However, reducing a problem to a
minimum problem, i.e., no more redundant values can be
removed from the domain of the problem is often NP-hard.
This is why a search procedure is often needed to explore
the remaining solution space. Most popular search strategies
include depth-first (DF), best-first (BF), and limited discrep-
ancy search (LDS, Harvey and Ginsberg 1995).

The CP techniques can be compared and contrasted with
MILP. Hooker (2002) pointed out that the differences and
complementary strengths between the two techniques indi-
cate the opportunity for integrating; while the commonali-
ties often make the integration natural and easier. Two areas
of differences can be observed between CP and MILP.

First, from the modeling perspective CP’s declarative na-
ture can make the model expressive and compact with fewer
variables and constraints when compared with the MILP for-
mulation. This is especially true when modeling scheduling
problems. In most of the CP software such as ILOG Solver
(ILOG 2002a), ECLiPSe (Wallace et al. 1997), and CHIP
(Dincbas et al. 1988), there are special constructs available
to model scheduling constraints in an expressive and com-
pact way. In contrast, the modeling power of MILP has been
greatly hampered by the restrictiveness of linear expressions
for handling the temporal and resource constraints encoun-
tered in scheduling problems. The disjunctive formulation

of these constraints often involves an explosive number of
choice variables and constraints as evident in constraint (7)
and (8) in Sect. 2.2

Second, from the algorithmic perspective CP solves an
optimization problem through a naïve branch–and–bound
method by gradually tightening a bound on the objective
function. For a minimization problem with an objective
function f (x), each time a feasible solution x̄ is found, a
constraint f (x) < f (x̄) is added to the constraint store of
each subproblem in the remaining search tree. It is not ef-
ficient to do this in practice, since there is no sophisticated
relaxation algorithm in CP to obtain tight bounds and the
link between the objective function and the decision vari-
ables is quite loose (Milano and Trick 2004). In MILP, how-
ever, various relaxation methods have been well developed
(Nemhauser and Wolsey 1988). Hence, the success of CP
depends largely on the effectiveness of constraint propaga-
tion; whilst in MILP, the quality of relaxation plays an im-
portant role. Thus, the solution procedure may benefit from
incorporating bounding information obtained by relaxations
techniques in MILP to prune the solution space and accel-
erate search. Sometimes a problem has some characteris-
tics better handled by CP while others are better handled by
MILP. For such problems neither MILP nor CP alone may
perform well.

3.2 Hybrid approaches

Various integration schemes have been proposed to take ad-
vantage of the complementary strengths of CP and MILP
for solving combinatorial optimization problems. These
schemes can be generally classified into two categories:
preprocessing and hybrid approaches. Constraint propaga-
tion has been used as a preprocessing tool to reduce the
problem size of an RCPSP by Brucker and Knust (1998).
CP-based lower bounds for both the single-mode and multi-
mode RCPSP have also been studied by Brucker and Knust
(2000, 2003).

As for hybrid approaches, Bockmayr and Kasper (1998)
presented a unifying framework called branch–and–infer,
in which constraints for both MILP and CP are divided
into two categories, primitive and non-primitive. They dis-
cussed how non-primitive constraints could be used to infer
primitive constraints. Hooker and Osorio (1999) proposed
a mixed logic/linear modeling framework which is further
treated in detail by Hooker (2002). Hybrid approaches of-
ten depend on decompositions and allow close communi-
cations between the MILP and CP solvers. Different hy-
brid decomposition schemes include CP-based branch–and–
price (Easton et al. 2004), CP based Lagrangian relaxation
(Benoist et al. 2001 and Sellmann and Fahle 2003) and
CP-based Benders decomposition (Benoist et al. 2002 and
Eremin and Wallace 2001). Notably, Jain and Grossmann

286 J Sched (2009) 12: 281–298

(2001) proposed a hybrid Benders decomposition (HBD)
algorithm to solve a class of scheduling problem similar
to the open-shop multi-purpose machine (OMPM, Brucker
2001) scheduling problem, where temporal constraints are
restricted to release- and due-date constraints. The com-
putational results on the same problem were improved by
Thorsteinsson (2001) through a framework called branch–
and–check where the master problem is not solved to opti-
mality but halts once a feasible solution is found, and grad-
ually tightens the objective function value. Jain and Gross-
mann’s cut-generating scheme relies largely on the fact that
resource units (machines) are independent in the OMPM, so
that cuts could be generated for each individual machine in-
dependently. For more general scheduling problems, such as
the project scheduling problem with multi-skilled personnel
studied in this paper, it is not possible to infer cuts for each
person independently as the skilled personnel are interre-
lated through precedence or time lag constraints. In addi-
tion, the cuts generated by Jain and Grossmann (2001) are
simple “no-good” cuts, which could be rather weak when
they correspond with the entire set of resource units. It is
a challenge to infer effective cuts when resource units are
interrelated with each other. According to the authors’ best
knowledge, the HBD approach has not be implemented on
solving scheduling problems with precedence or time lag
constraints.

Li and Womer (2006b) developed a combined MILP/CP
decomposition heuristic called Skill Level Based Decompo-
sition (SLBD) to heuristically solve a similar problem with
the objective function minimizing the number selected of
personnel. The SLBD works in such a way that a schedul-
ing subproblem is solved first to obtain a feasible schedule,
followed by a resource leveling procedure that smoothes the
resource utilization, and finally an assignment problem is
solved to obtain a feasible solution to the original problem.
The skill level, i.e., the skill availability for the scheduling
subproblem, is controlled as low as possible to obtain a fea-
sible schedule for the succeeding assignment phase. A more
elaborate procedure based on tabu search was implemented
by Li and Womer (2006a) in the resource leveling phase to
smooth the resource utilization. However, since the objec-
tive function (1) may not be a monotonic function of the
number of selected personnel, the SLBD is unable to handle
the objective function with staffing costs considered in this
paper, although it has shown significant advantages over the
pure MILP or CP approach alone in both solution quality
and speed.

4 The hybrid Benders decomposition algorithm

4.1 Hybrid Benders decomposition

The classical Benders decomposition (Benders 1962) is a
method for solving optimization problems with enormous

numbers of constraints. As the dual of the column genera-
tion method, the strategy here is to generate rows or con-
straints and successively add them into the constraint sys-
tem. Cuts (constraints) generated based on duality theory are
called “Benders cuts”.

Following the hybrid MILP/CP Benders decomposi-
tion (HBD) framework by Jain and Grossmann (2001), we
decompose the original project scheduling problem with
skilled-personnel into a relaxed master problem (RMP),
which contains only assignment decision variables, and a
feasibility subproblem (SP) which takes care of the schedul-
ing aspect of the problem. We rely on MILP methods such as
branch–and–bound and branch–and–cut to solve the RMP.
We use CP to model the scheduling SP which would oth-
erwise be difficult for MILP to model and apply CP-based
algorithms to solve the feasibility scheduling SP, for which
efficient constraint propagation algorithms are available.

We let the assignment binary variable xijk and selec-
tion binary variable zs be associated with the RMP. The
rest of the variables related to the scheduling part of the
problem, i.e., the starting time of each task tj and the se-
quencing variable yjj ′ will be replaced by CP variables to
construct the scheduling subproblem. All the submodels are
constructed in OPL, a modeling language supporting both
linear programming and constraint programming (Van Hen-
tenryck 1999).

The MILP formulation of the RMP at iteration n can be
written as:

RMP_MILP(n)

= {
min

∑

s∈S

cszs

subject to:

constraints (2), (3), and (4)

βi(X) ≤ 1, ∀i = 1, . . . , n. (9)

}

Constraints (9) include cuts generated at each iteration i.
Each cut prevents a pair of overlapping activities from be-
ing assigned to the same individual. The overlapping ac-
tivities are identified through temporal analysis techniques
in project scheduling, which will be explained in detail in
Sect. 4.3.

For a partial solution (Xn,Zn) from solving the RMP
at iteration n, we define a scheduling feasibility subprob-
lem modeled by CP. By fixing the assignment variables
(Xn,Zn), the subproblem SP decides if this partial solution
can be extended to a complete solution. We define the set of
available personnel S as an array of unary resources called

J Sched (2009) 12: 281–298 287

SkilledPersonnel:

UnaryResource SkilledPersonnel [S].
Then the CP formulation of the feasibility SP at iteration n

can be written as below, where the italic words are keywords
in OPL

SP_CP(n)

= {
Solve

subject to:

j precedes j ′, ∀(j, j ′) ∈ P ; (10)

j.start + δjj ′ ≤ j ′.start, ∀(j, j ′) ∈ J × J\P ;
(11)

j.start + pj ≤ min{dj , T̄ }, ∀j ∈ J ; (12)

if xi
jks = 1, then j requires SkilledPersonnel[s],

∀i = 1, . . . , n; j ∈ J, k ∈ Kj , s ∈ S. (13)

}
Constraints (10) through (12) take care of the tempo-

ral constraints. CP provides a descriptive way to express
the precedence constraint as in (10), where P represents
the set of precedence constraints. Constraints (11) and (12)
are equivalent with (5) and (6), respectively, where j.start
refers to the starting time of activity j . Constraint (13) es-
tablishes the link between assignment variables and resource
constraints. Since the values of xi

jks are fixed through solv-
ing the RMP_MILP(i) at iteration i, i.e., the assignment
of tasks/skills to the skilled personnel has been made, the
original complex assignment-type scheduling problem re-
duces to a pure single-mode RCPSP with unary resources
for which efficient constraint propagation algorithms exist
(Baptiste et al. 2001). Also notice that comparing with the
pure CP formulation in Li and Womer (2006b), here an ac-
tivity is defined at the task level instead of the skill level,
hence the number of activities in the subproblem has been
reduced. In addition, SP_CP(n) is a feasibility problem in-
stead of an optimization problem. That is, it only needs to
determine whether a feasible solution exists or not, a prob-
lem for which CP is relatively efficient to handle.

The way to generate cuts is often the key to success of
a Benders decomposition algorithm. A main feature of our
HBD is to obtain the possible causes of infeasibility ex ante,
i.e., before the main algorithm iterations start. The role of
solving the scheduling subproblem is to infer (trigger) the
violated constraints. The causes of infeasibility to the sub-
problem can be interpreted a priori as “two overlapping ac-
tivities are assigned to the same individual” due to assump-
tion (A2). Theoretically, we could obtain all pairs of over-
lapping activities and include the complete set of constraints

(9) in the RMP. However, it is impractical to do so because
of the enormous number of such constraints and also the fact
that only a small fraction of such constraints are binding at
an optimal solution (Lasdon 1970). Hence, the causes of in-
feasibility are inferred as cuts, which are added iteratively
into the RMP. Next we describe our cut generating schemes
in detail.

4.2 Generating cuts

We first introduce the concept of minimal forbidden set in
the resource-constrained project scheduling literature. A for-
bidden set represents a set of activities whose total require-
ment for some resource exceeds the available capacity of the
resource (Bartusch et al. 1988). A set of activities F ⊆ A is
called a forbidden set if
∑

j∈F

rjk > Qk for some k ∈ R,

where R refers to the set of resources, Qk refers to the
available capacity of resource k, and rjk denotes the re-
quirement of resource k by activity j . If no proper sub-
set F ′ ⊂ F is forbidden, we call F a minimal forbidden
set. For a unary resource such as each individual s ∈ S in
our model, a minimal forbidden set always contains two el-
ements, e.g., Fs = {j, j ′|s is assigned to both j and j ′}. To
resolve the resource conflicts caused by Fs , a precedence
constraint j precedes j ′ (or j ′ precedes j) needs to be in-
troduced to “break up” Fs (to prevent j and j ′ from being
executed simultaneously). We have the following observa-
tions concerning the resulting scheduling problem with the
newly added precedence constraint:

Observation 1 When j and j ′ must overlap in order to sat-
isfy the temporal constraints (3) and (4) (denoted by j‖j ′),
the resulting scheduling problem will not be feasible.

Observation 2 When j and j ′ never overlap in order to sat-
isfy the temporal constraints (3) and (4) (denoted by j ∼ j ′),
the resulting scheduling problem will always be feasible.

Observation 3 When neither (O1) nor (O2) occurs, i.e., j

and j ′ are possible to overlap (denoted by j |j ′), the result-
ing scheduling problem may or may not be feasible.

Observation 1 indicates that the only way to resolve in-
feasibility is to prevent j and j ′ from being assigned with
the same person, which generates a valid cut (global cut) for
the RMP. Observation 2 implies that no cut will be gener-
ated (or generating a redundant cut) for the RMP, as it is
always feasible to assign the same person to j and j ′. Even
though the cut generated through Observation 3 may resolve
resource conflicts, it will not be a valid cut when the result-
ing scheduling problem is feasible.

288 J Sched (2009) 12: 281–298

Fig. 2 Identify a pair of (j, j ′)
satisfying j‖j ′

Fig. 3 Identify a pair of (j, j ′)
satisfying j |j ′

4.2.1 Global cuts

Global cuts are constraints that prevent a pair of overlapping
activities j‖j ′ from being assigned with the same person
and must be satisfied by all feasible solutions to the opti-
mization problem. The following proposition is crucial.

Proposition 1 The set Cg of global cuts consisting of con-
straints taking the form: xjs + xj ′s ≤ 1 where j‖j ′, s ∈ S,
are valid cuts.

Proof Suppose that there exists a feasible solution that does
not satisfy the above inequality, i.e., xjs +xj ′s = 2 and j‖j ′.
This is to say that at some time point s has to perform both
j and j ′ simultaneously, which violates assumption (A2), a
contradiction. Thus, such a feasible solution does not exist.
Therefore, xjs + xj ′s ≤ 1 where j‖j ′ is a valid cut. �

We use earliest start (ES), earliest completion (EC), latest
start (LS), and latest completion (LC) times to define the
time window of an activity. Figure 2 shows how to identify
a pair of (j, j ′) satisfying j‖j ′ and leads to the following
observation.

Observation 4 If pj + pj ′ > max{LCj ,LCj ′ } − min{ESj ,

ESj ′ } holds, then j‖j ′.

We identify all pairs of (j, j ′) satisfying j‖j ′ using the
inequality test in Observation 4.

4.2.2 Trial cuts

Trial cuts are constraints that prevent a pair of possible-
overlapping activities j |j ′ from being assigned with the
same person. We state and prove the following proposition.

Proposition 2 The set Ct of trial cuts consisting of con-
straints taking the form: xjs + xj ′s ≤ 1 where j |j ′, s ∈ S,
are not valid cuts.

Proof Consider the scheduling feasibility problem with
only constraints (3) and (4). Since j |j ′, there exists a fea-
sible schedule ξ that satisfies all the temporal constraints
without overlapping j and j ′. Then we solve an assignment
subproblem given the feasible schedule ξ while enforcing
xjs + xj ′s = 2 (assigning s to both j and j ′) and are always
able to obtain a feasible complete solution that does not sat-
isfy xjs + xj ′s ≤ 1. Hence, xjs + xj ′s ≤ 1 where j |j ′, s ∈ S,

is not a valid cut. �

Figure 3 illustrates how to identify a pair of (j, j ′) satis-
fying j |j ′ and leads to the following observation.

Observation 5 If pj + pj ′ ≤ max{LCj ,LCj ′ } − min{ESj ,

ESj ′ } and

ESj ′ − ESj < pj and ESj − ESj ′ < pj ′ hold,

then j |j ′.

We identify all pairs of (j, j ′) satisfying j |j ′ using the
inequality test in Observation 5.

4.2.3 Infer cuts

For a partial solution (Xi,Zi) obtained form solving
RMP(i) at iteration i, cuts in the global cut set Cg are
checked first to see if they are violated. Those violated
global cuts are then added into the RMP and the next itera-
tion starts. If none of the global cuts is violated, we check
the trial cut set Ct and add any violated trial cuts into the
RMP. The procedure for inferring cuts is presented below.

J Sched (2009) 12: 281–298 289

Procedure 1: InferCuts (Xi)

Step 1. Initialization: Set numGlobalCuts := 0
Step 2. Infer global cuts:
For (j, j ′) : j‖j ′

For k ∈ Kj and k′ ∈ Kj ′

For s ∈ S

If xi
jks = 1 and xi

j ′k′s = 1, then
Add a global cut: xjks + xj ′k′s ≤ 1 into RMP(i)
Set numGlobalCuts := numGlobalCuts + 1

Step 3. Infer trial cuts:
If numGlobalCuts = 0, then

For (j, j ′) : j |j ′

For k ∈ Kj and k′ ∈ Kj ′

For s ∈ S

If xi
jks = 1 and xi

j ′k′s = 1, then
Add a trial cut: xjks + xj ′k′s ≤ 1 into RMP(i)

End Procedure

The inferred cuts not only cut off the current partial solu-
tion, but also eliminate partial solutions with similar assign-
ment decisions. It is important to notice that we try to avoid
trial cuts whenever possible, i.e., Step 3 is executed only if
no global cut is triggered. The main reason for this is that
by adding only global cuts (valid cuts) we maintain the al-
gorithm’s ability to prove optimality; otherwise, if any trial
cut (non-valid cut) is triggered, the algorithm will no longer
be able to prove optimality.

It should be stressed that the cuts generated in this
way has incorporated problem-specific information gath-
ered from the scheduling aspect of the original problem and
is believed to be tighter than the general “no-good” cuts
(Hooker 2000). The computational results indicate that our
cut generating procedure works quite effectively requiring
only 10 iterations on average to solve the set of 128 test in-
stances.

4.3 Temporal analysis

To obtain the global cut set Cg and trial cut set Ct , we ap-
ply temporal project scheduling techniques to identify time
windows of the activities. Following Neumann et al. (2002),
the earliest starting time ESj for activity j can be found by
solving the following linear program:

ES_LP

= {
min

∑

j∈J

tj (14)

subject to:

constraints (5) and (6);

t0 = 0; (15)

tj ≥ 0.

}

Constraint (15) sets the start of the dummy start activ-
ity to be zero. To find the latest starting time LSj , simply
replace (14) with a maximizing objective function:

LS_LP

= {
max

∑

j∈J

tj (16)

subject to:

constraints (5), (6), and (15);
tj ≥ 0.

}

Then the earliest and latest completion time ECj and LCj

can be calculated as follows:

ECj = ESj + pj , ∀j ∈ J ; (17)

LCj = LSj + pj , ∀j ∈ J. (18)

One may also consider an alternative approach based on
solving the transitive closure of a distance matrix (Brucker
and Knust 2000) through the well-known Floyd–Warshall
algorithm with a time complexity of O(|J |3). Brucker
(2002) introduced constraint propagation based techniques
to refine the distance matrix, i.e., to further reduce the value
of each entry in the matrix representing a minimum time lag.

We then use the inequality tests in Observations 4 and 5
to obtain Cg and Ct , respectively.

The following two propositions reveal the effect of
project deadline on the cardinality of Cg and Ct .

Proposition 3 The cardinality of Cg is a monotonically de-
creasing function of the project deadline T̄ .

Proof Assume the project deadline becomes less restrictive,
i.e., T̄ ′ > T̄ . It has no effect on the optimal solution of
the ES_LP. The LS_LP, however, becomes less restrictive
and the latest starting time of at least one activity becomes
greater. Thus, the right-hand side of at least one inequal-
ity in Observation 4 becomes greater and more restrictive.
Therefore, no more number of (j, j ′) pairs will satisfy the
inequality test in Observation 4. Hence, |C′g| ≤ |Cg|. �

Proposition 4 The cardinality of Ct is a monotonically in-
creasing function of the project deadline T̄ .

290 J Sched (2009) 12: 281–298

Fig. 4 Hybrid Benders
decomposition algorithm

Proof Assume the project deadline becomes looser, i.e.,
T̄ ′ > T̄ . Following the similar logic in the proof of Propo-
sition 3, at least one inequality test in Observation 5 be-
comes less restrictive. Then no less number of (j, j ′) pairs
will satisfy the inequality test in Observation 4. Hence,
|C′g| ≥ |Cg|. �

Both Propositions 3 and 4 will be verified by our compu-
tational experiments.

4.4 The HBD algorithm

The algorithm is summarized in Fig. 4. Each iteration starts
by solving the RMP_MILP problem to optimality. If there

J Sched (2009) 12: 281–298 291

is no feasible solution found, then the original problem is
infeasible or not solved with the given computational time.
Otherwise, the obtained partial solution is used to construct
the feasibility SP_CP problem, which attempts to determine
if the partial solution can be extended to a complete solution
that satisfies the scheduling constraints. If there exists such
a complete solution, then this solution is an optimal solution
given that no trial cut has been added into the master prob-
lem during the solution process. If the SP_CP is infeasible,
the causes of infeasibility are inferred as cuts and added to
the RMP_MILP model through the InferCuts (Procedure 1).
The algorithm terminates when the partial solution can be
extended to a complete feasible solution, or the RMP_MILP
becomes infeasible.

Assuming that only global cuts from the cut set Cg have
been added into the RMP_MILP, we state the following
proposition concerning the convergence of our HBD algo-
rithm. The proof follows a similar approach as the conver-
gence proof in Jain and Grossmann (2001).

Proposition 5 If only global cuts from Cg are added into
the RMP_MILP, the HBD algorithm converges to the op-
timal solution or proves infeasibility in a finite number of
iterations.

Proof The assignment subproblem RMP_MILP is either
feasible or infeasible as the domain of the decision variables
x and z is bounded. We consider the following two cases.

(i) RMP_MILP is feasible.
The domain of RMP_MILP(n) reduces as n increases.

Since the domain of x and z is finite, there exists an iteration
ξ where the optimal solution (xξ , zξ) to the master problem
leads to a feasible solution t ξ to the scheduling subproblem
SP_CP(ξ). Since global cuts in Cg do not exclude any feasi-
ble solution from the original problem according to Propo-
sition 1, RMP_MILP(n) is a relaxation of the original prob-
lem. Then the solution (xξ , zξ , tξ) is an optimal solution to
the original problem. Hence, the algorithm will converge to
an optimal solution in a finite number of iterations.

(ii) RMP_MILP is infeasible.
If the relaxed master problem is infeasible, the subprob-

lem will never obtain a feasible solution. Since the domain
of x and z is finite and shrinks with each successive itera-
tion, the master problem will become infeasible after a finite
number of iterations. �

If any trial cut from the set Ct is incurred, Proposition 5
will no longer hold due to Proposition 2. Despite this po-
tential loss of ability to prove optimality, trial cuts are still
preferable to the general “no-good” cuts in Jain and Gross-
mann (2001). This is because the general “no-good” gener-
ated cuts in the context of interrelated personnel are rather
weak, which leads to a slow convergence. Hence, we have

to trade-off the ability to proof optimality with the efficiency
of the algorithm.

Although the proposed decomposition algorithm may not
be able to find optimal solution, it will not remove all fea-
sible solutions from the solution space. Note that both the
global and trial cuts restrict the assignment subproblem
rather than scheduling subproblem. The format of trial cuts,
preventing a person to be simultaneously assigned to a pair
of jobs, serves as a heuristic to resolve the resource conflicts
caused by the minimum forbidden sets. Practically speak-
ing, it will be costly to examine all possible trial cuts to re-
solve resource conflicts, although such an exhaustive search
is able to prove optimality from a theoretical perspective.
The computational results, which will be presented next,
suggest that our cut-generating scheme is both efficient as
of computational time and effective as of solution quality.

Our cut-generating scheme also provides insights on the
effectiveness of the hybrid Benders decomposition. The
likelihood for the scheduling subproblem to be feasible de-
pends largely on the time restrictiveness of the project. The
more time-restrictive the project is, the less flexible is the
scheduling subproblem to resolve resource conflicts and the
more global cuts to infer (Proposition 3). We state the fol-
lowing conjecture.

Conjecture 1 The original problem with a tighter project
deadline requires more iterations for the HBD algorithm to
solve.

We further expect that the problem with a tighter project
deadline to be more difficult to prove optimality due to the
difficulty of resolving resource conflicts. That is, trial cuts
are more likely to be incurred to resolve infeasibility, even
though the size of the trial cut set is smaller (Proposition 4).
We thus have Conjecture 2.

Conjecture 2 The original problem with a tighter project
deadline is more difficult for HBD to prove optimality.

Both conjectures will be verified in our computational
study presented next.

5 Computational study

A full factorial experimental design is used to conduct the
computational study. We compare our HBD algorithm with
the pure MILP and CP approach alone, as well as the SLBD
algorithm proposed by Li and Womer (2006b). All the four
approaches are implemented in ILOG OPL Studio 3.6.1
(ILOG 2002c), which uses CPLEX 8.1 (ILOG 2002b) to
solve an MILP, ILOG Solver 5.3 (ILOG 2002a) to solve a
CP. The computations are performed on a PC Pentium IV
2.4 GHz with 512 Mb RAM.

292 J Sched (2009) 12: 281–298

Table 5 Factors considered in
the experimental design Factor Factor explanation Value

|J| The number of tasks in a project {10, 30}

|K| The number of skills relevant to a project {4, 8}

|S| The personnel availability {Low, High}

RT Restrictiveness of Thesen {0.35, 0.65}

R Multiplier of average number of skills required by a task {0.3, 0.6}

M Multiplier of average number of skills possessed by a person {0.3, 0.6}

DF Deadline factor {Low, High}

5.1 Experimental design

Since our problem and the RCPSP share common data
concerning the project network, we adopt instances of the
RCPSP for our experiments. As our problem also involves
minimal and maximal time lags we choose ProGen/max
(Schwindt 1996) to generate the RCPSP instances. Seven
control factors in our experiment and their explanations are
listed in Table 5.

The problem size is directly affected by the number of
tasks |J|, the number of skills |K|, and personnel availability
|S|. In order to have meaningful comparisons, we have con-
centrated on the problem space where MILP and CP meth-
ods had a chance to remain competitive. In our experiment,
|J| is chosen from the two-element set {10, 30} and |K| is
chosen from {4, 8}. The low level of personnel availability
|S| is chosen such that an instance could be feasible; and the
high level of |S| is chosen approximately 50% higher than
the low level of |S|. For example, if it is found that at least
60 people are needed for a project, we set the low level of
|S| to be 60 and high level to be 60 + 60 ∗ 50% = 90. The
Restrictiveness of Thesen (RT, Thesen 1977) measures the
complexity of a network and has been shown to have an even
greater effect on the complexity of RCPSP than the number
of tasks |J| (Schwindt 1996). In our experiment, RT is cho-
sen from {0.35, 0.65}. The complexity of skill requirement
is controlled by the multiplier R representing the average
number of skills required by a task, which affects both the
scheduling and assignment aspects of the problem. A low
level of R is set to be around 0.3 and a high level around
0.6. Skill mix complexity is reflected by the multiplier M of
average number of skills possessed by an individual, whose
effect is mainly on the assignment problem. Likewise, a low
level of M is set to be around 0.3 and a high level around 0.6.

An important factor we expect to have a significant im-
pact on the algorithm performance is the deadline T̄ on the
project makespan. In order to verify Conjectures 1 and 2, we
have set the lower level of T̄ to be lowest possible as long
as the problem remains feasible. T̄ is calculated following
Drexl and Kimms (2001):

T̄ = DF · max EFj , (19)

where EFj is the earliest starting time of activity j .

Fig. 5 Number of overlapping activities of a 10-task instance as
project deadline decreases

In order to compare with the SLBD algorithm, we assume
that each person is paid the same salary, so that the objec-
tive function reduces to minimizing the number of selected
personnel to perform the project.

5.2 Computational results

A running time limit of 10 hours is imposed for all the four
approaches. For the HBD, a limit of 10 seconds is imposed
on the CP scheduling subproblem and 600 seconds on the
master MILP problem. Among the 128 instances, two in-
stances are infeasible which leaves a total of 126 feasible
instances.

5.2.1 The effect of project deadline

We first conducted experiments to analyze the effect of
project deadline on the number of must-overlapping (‖) and
possible-overlapping (|) activities, i.e., the cardinality of Cg

and Ct . Figure 5 illustrates such an experiment performed
on a 10-task instance. As the project becomes more restric-
tive (the project deadline represented by DF decreases), the
number of must-overlapping pairs increases, which supports
Proposition 3 and the number of possible-overlapping pairs
decreases, which supports Proposition 4.

Figure 6 illustrates the effect of project deadline on the
performance of HBD on solving the set of 126 instances.

J Sched (2009) 12: 281–298 293

Fig. 6 The effect of project deadline on the performance of HBD

Fig. 7 Comparison of the overall computational results

As we have expected in Conjecture 1, on average the
problem with a loose project deadline can be solved by the
HBD algorithm with less effort (fewer cuts). Concerning the
algorithm’s ability to find optimal solutions and prove opti-
mality, for the 63 instances with a loose deadline, 57 of them
(90%) find optimal solutions and prove optimality (a success
rate of 100%); for the other 63 instances with a strict dead-
line, 49 of them (77%) find optimal solutions and only 45 of
the 49 optimal solutions have been proved to be optimal with
a success rate of 92%. These results support Conjecture 2.

5.2.2 Comparison of algorithm performance

We now compare the overall performance of the four ap-
proaches.

As we can see from Fig. 7, only the two decomposition
algorithms HBD and SLBD have found feasible solutions
to all of the 126 problems. The HBD is able to find more
optimal solutions than any of the other approaches. HBD is
advantageous over the heuristic approach SLBD since there
is no way for SLBD to prove optimality. Notably, HBD has
an overall success rate of 96% to prove optimality (when an
optimal solution is found) in contrast to 83% of MILP.

We further compare solution quality as shown in Fig. 8.
Clearly, the HBD outperforms the other three in objective

function value, saving about one person over MILP and two
persons over CP for each problem instance on average. The

Fig. 8 Comparison of the sum of objective values

Fig. 9 Comparison of the average project makespan

SLBD is the second best among the four with better solution
quality than the pure MILP or CP approach alone.

Although project makespan does not appear in the ob-
jective function, desirably one prefers the schedule with
a shorter makespan when it results in the same objec-
tive value as other solutions. Interestingly, the four ap-
proaches produce different project makespan in their best
solutions found. The HBD provides solutions with the short-
est makespan on average as indicated by Fig. 9. It excels
by an average of 4 time units over CP, 11 time units over
SLBD, and almost 14 time units over MILP. These could
represent tremendous time savings on scheduling a project
in the real world: the HBD finds schedules not only with less
cost but also with shorter makespan. This merit of HBD can
be attributed to its decomposition characteristic. The HBD
decomposes the original problem into a pure GAP and a
pure single-mode RCPSP, where the project makespan can
be well handled by CP techniques. This also explains the
fact that the pure CP approach is the second best in the qual-
ity of makespan. In contrast with HBD, the SLBD is do-
ing the opposite by finding a feasible schedule first and then
solving the assignment part. It always starts from the most
restrictive skill level (lowest possible resource availability),
which potentially leads to a longer makespan. From a differ-
ent perspective, the SLBD can be viewed as a time-resource
trade-off approach. Since the SLBD is greedy toward find-
ing solutions with lower costs, the quality of makespan has

294 J Sched (2009) 12: 281–298

Table 6 Regression results
with objective value as
dependent variable

*This estimate is significantly
different from zero at 95%
confidence level

CP HBD SLBD MILP

Intercept −40.864 −31.500 −31.448 −43.733

|J| 1.024* 1.024* 1.012* 1.110*

|K| 3.575* 2.900* 2.933* 3.331*

|S| 2.324 1.086 1.268 2.551

RT −8.087 −9.921* −10.150* −7.955

R 14.864* 12.758* 12.857* 14.480*

M 0.512 −0.258 −0.358 1.332

DF −0.381 −0.365 −0.333 0.0635

Adjusted R-square 0.778 0.800 0.801 0.701

Fig. 10 Comparison of the average computational time

to be sacrificed to some degree. The pure MILP approach
performs the worst among the four in project makespan. Dif-
ferent from the decomposition approach, the MILP attempts
to solve the original problem with a mixture of assignment
and scheduling variables and constraints, which does not ex-
ploit the structure of the problem at all. Thus, it often fails to
find a shorter makespan for a given assignment when there
exists such a makespan.

Next we compare the average computational time for
each approach to find their best solutions in Fig. 10.

The two decomposition algorithms are significantly
faster than the pure MILP and CP algorithms alone. The
SLBD is the fastest among the four due to its heuristic na-
ture, spending considerably less running time than the other
three, i.e., around 1/11 of HBD, 1/45 of MILP, and 1/72
of CP. HBD is the second best with about 1/4 of the run-
ning time of MILP and 1/7 of CP. The efficiency of CP
for solving scheduling problems has been greatly hampered
by the assignment part of PSMPR. With decomposition, the
advantage of CP has been fully exploited, solving a feasi-
bility scheduling subproblem within seconds and saving the
overall computational time significantly.

5.2.3 Multi-factor analysis

Multiple linear regression (MLR) is used to quantify the ef-
fects of the factors on the algorithm performance. We find

that both the objective value and makespan can be well ex-
plained by MLR. The computational time, however, cannot
be well explained with an R-square less than 30%. This is
probably due to the problem’s combinatorial nature and NP-
hardness such that even a small-size instance may take a
long time to solve. Table 6 shows the regression results with
objective value as dependent variable.

It is clear that the decomposition algorithms HBD and
SLBD have higher adjusted R-square than the direct ap-
proaches, which is probably because they are structured to
handle different types of subproblems separately instead of
solving the original problem directly. Also notice that the
network complexity represented by RT is significantly non-
zero only for the two decomposition approaches.

The regression results for the makespan as dependent
variable are presented in Table 7. Instead of using RT di-
rectly, we have used |J| ∗ RT to capture the interactive ef-
fect between |J| and RT, which improves the adjusted R-
square from around 70% to over 90% for the decomposition
approaches. Again, HBD and SLBD have higher adjusted
R-square.

The regression equations obtained above can be used to
construct the three-dimensional surface graphs for compar-
ing algorithm performance. This analysis provides us with
a visualization of which algorithm dominates the other in
what regions of the problem space. We set the difference
of the performance measures (objective value or makespan)
between two methods as a dependent variable and vary the
number of tasks |J| and the number of skills |K|, which are
two major factors affecting the problem size and are both
significant in the associated regression functions.

Figure 11 through Fig. 13 compares HBD with MILP,
CP and SLBD in objective function value, respectively. Fig-
ure 11 shows that the HBD tends to dominate MILP in ob-
jective value when |J| or |K| increases. From Fig. 12 we ob-
serve that although |J| does not seem to have much impact
on the difference of objective value between HBD and CP,
as |K| increases the advantage of HBD over CP increases.
Figure 13 indicates that when |J| increases, the SLBD tends

J Sched (2009) 12: 281–298 295

Table 7 Regression results
with makespan as dependent
variable

*This estimate is significantly
different from zero at 95%
confidence level

CP HBD SLBD MILP

Intercept −72.871 −47.850 −84.194 −147.090

|J| 1.609* 1.482* 2.450* 3.077*

|K| 6.955* 4.982* 3.400* 6.468*

|S| −5.820 −0.366 −1.442 11.00290

R 9.257 0.960 8.723* 17.153*

M −2.664 0.228 −0.00460 −0.966

DF 9.683 1.667 22.492* 29.381*

J ∗ RT 7.869* 7.571* 7.182* 6.765*

Adjusted R-square 0.809 0.919 0.904 0.725

Fig. 11 HBD dominates MILP below zero for objective value

Fig. 12 HBD dominates CP below zero for objective value

to dominate HBD, which is not surprising given the heuris-
tic nature of SLBD and the computational time limits im-
posed on the HBD. However, as |K| increases the advantage
of HBD over SLBD increases.

Fig. 13 HBD dominates SLBD below zero for objective value

Fig. 14 HBD dominates MILP below zero for makespan

Figure 14 through Fig. 16 compares HBD with MILP, CP
and SLBD in project makespan, respectively. We observe
from Figs. 14 and 15 that the HBD tends to dominate both
MILP and CP in project makespan when |J| or |K| increases.
Figure 16 shows that the only problem space in which the

296 J Sched (2009) 12: 281–298

Fig. 15 HBD dominates CP below zero for makespan

SLBD dominates HBD is where |J| is small and |K| is large
(e.g., |J| = 5 and |K| = 8), which does not seem likely to
occur in real world problems.

6 Discussions

Although we present our model and hybrid decomposi-
tion algorithm in the context of a pure scheduling prob-
lem, our modeling and solution approach can be modi-
fied to cope with various planning problems. A variant
of our model has been applied to the US Navy’s DDX
crew optimization problem (Li and Womer 2006a), which
finds the minimum number of sailors with optimal skill
mix to man a ship, while completing a specific mission
consisting of interrelated tasks. There, the resource as-
signment subproblem is modeled as a bin packing prob-
lem with conflicts (BPC, Jasen 1999); while the result-
ing scheduling subproblem leads to a single-mode RCPSP
with unary resources. This application aids the decision
maker to plan for necessary training requirements in the
intermediate run. A closely related model, the multi-mode
RCPSP as discussed in Sect. 2.3, has been applied to tackle
an important planning problem in the supply chain op-
timization field, namely, the supply chain configuration
problem with explicit resource and capacity constraints (Li
and Womer 2008). There, the assignment aspect involves
choosing the optimal configurations/modes for each activ-
ity/process in the supply chain (discrete decision domain);
while the scheduling aspect involves determining the in-
bound and outbound service times of each process subject
to temporal constraints (continuous decision domain).

We now examine the relationship between our proposed
model/algorithm and the temporal planning problems in
the planning research community, which involve arrang-
ing actions and assigning resources in order to accomplish
given tasks and objectives over a period of time (Fox and

Fig. 16 HBD dominates SLBD below zero for makespan

Long 2003; Wah and Chen 2006). Note that both schedul-
ing and assignment decisions are critical in the temporal
planning problem: (i) on one hand, time-related technical
requirements are often modeled by a network of temporal
constraints (Dechter et al. 1991); (ii) on the other hand,
the execution of activities requires renewable resources—
machines, vehicles, or skilled personnel (as considered
in this paper), which often gives rise to resource allo-
cation/assignment type of subproblems resembling multi-
processor scheduling or bin packing problems (Fox and
Long 2001). Both (i) and (ii) fit well into our modeling
framework. To be specific, the work-break-down structure
(WBS) in project scheduling makes it flexible in defining ac-
tivities with different levels of details. Moreover, the gener-
alized temporal constraints considered in our model capture
a rich set of time dependencies, such as overlaps and delays
in addition to precedence relations (Neumann et al. 2002),
which are ubiquitous in the planning context (Dechter et al.
1991). As for the resource allocation decisions, the inclusion
of workloads of renewable resource units makes it possible
to allocate each resource unit through the planning horizon.
It is also possible to allow the resource availability vary over
time.

Our hybrid decomposition algorithm also shares some
similar insights with certain solution approaches developed
in the temporal planning field. Notably, Fox and Long
(2001) present domain analysis techniques to identify and
extract subproblems, for which effective and efficient solu-
tion methods are available. They also stress the challenge
of integrating different solution procedures to cooperate in
solving the original problem. In our HBD algorithm, the
original problem is decomposed into an assignment sub-
problem and a scheduling subproblem, which is solved by
integer programming methods and constraint programming,
respectively. The two solvers are linked together via “cuts”
generated by temporal analysis. Such an OR/AI hybrid
framework was recently advocated by Fox (2006), and was
believed to be an promising line of research in the planning

J Sched (2009) 12: 281–298 297

community. Another study of utilizing such a hybrid strat-
egy, that integrates max-SAT technique in AI and program
evaluation and review technique (PERT) in OR, to cope with
temporal planning is provided by Xing et al. (2006). The
solution approach by Wah and Chen (2006) relies on con-
straint partitioning, which decomposes the original problem
into significantly smaller subproblems. Instead of generating
“cuts” to resolve violations of global constraints, they devise
a penalty formulation and adjust the weights of violated con-
straints to resolve conflicts. The HBD paradigm also shares
some similarities with the so called Squeaky Wheel Opti-
mization (SWO) proposed by Joslin and Clements (1999).
The core of SWO is a Construct/Analyze/Prioritize cycle.
The Construct component operates in the solution space,
which is analogous to solving the relaxed master problem
in HBD. The Prioritize component operates in the prioriti-
zation space to iteratively generate new priorities for Con-
struct. The Analyze component serves as the link between
Construct and Prioritize, which finds “troubled” elements
in the current solution. The role of Analyze is much simi-
lar to that of the cut generating scheme in our HBD, which
deduces “violated” assignment constraints and adds them it-
eratively to the master problem. Frank and Kurklu (2005)
successfully applied SWO to an optimization problem that
lies on the scheduling boundaries of classical planning on
SOFIA at NASA.

7 Conclusions and future research

In this paper, we studied the project scheduling problem
with multi-skilled personnel to minimize the total staffing
costs for executing a project. Our model is general enough
to include minimum and maximum time lags as general-
izations to precedence constraints in traditional machine
scheduling settings. The model also takes each individual’s
workload capacity into consideration, a feature often needed
in realistic personnel scheduling. We also show the rele-
vance of our model to the planning research community, in
particular, the temporal planning problems.

We developed a hybrid MILP/CP Benders decomposi-
tion (HBD) algorithm to solve this strongly NP-hard prob-
lem. The key to the practical effectiveness and efficiency
of our algorithm is the use of temporal analysis to generate
problem-specific cuts (instead of the general no-good cuts)
during the Benders decomposition iterations. The computa-
tional results show that the HBD excels other approaches
in solution quality with reasonable computational time. No-
tably, the HBD finds and proves more optimal solutions than
the pure MILP method while spending significantly less
computation time. When the project does not have a restric-
tive deadline, it performs particularly well (with a success

rate of 100% to prove optimality for the set of tested prob-
lem instances). The solution quality of HBD is also robust
as evident by our multi-factor analysis.

Two lines of research could be conducted in the future.
From a modeling perspective, it might be interesting to con-
sider personnel’s skill proficiency. This can be achieved by
either generalizing the objective function to minimize the
total assignment costs or let task/skill’s processing time de-
pend on assigned personnel’s proficiency level. From an al-
gorithmic perspective, alternative hybrid strategies could be
applied within the HBD framework proposed in this pa-
per. This is motivated by the fact that it is still costly for
MILP methods to solve the relaxed master problem which
is NP-hard itself. Inspired by the branch–and–check ap-
proach of Thorsteinsson (2001) where the master problem
does not need to be solved to optimality, we could apply
a local search heuristic to obtain a good quality solution to
the master problem, which leads to a hybrid local search and
constraint programming algorithm. This development is par-
ticularly attractive when dealing with large size problems in
the real world. It will also be interesting to further explore
the possibility for the HBD paradigm to cope with the tem-
poral planning problems in the planning research commu-
nity, given the analogies between the optimization problem
studied in this paper and temporal planning problem.

Acknowledgements This research was supported by the Office of
Naval Research (ONR) under Grant No. N00140310621. We would
also like to thank Derek Long and two anonymous referees for their
detailed and constructive comments that help improve this paper.

References

Aksin, O. Z., Karaesmen, F., & Ormeci, E. L. (2006). A review of
workforce cross-training in call centers from an operations man-
agement perspective. In D. Nembhard (Ed.), Workforce cross
training handbook. Boca Raton: CRC Press.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based
scheduling: applying constraint programming to scheduling prob-
lems. New York: Springer.

Bartusch, M., Mohring, R. H., & Randermacher, F. J. (1988). Schedul-
ing project networks with resource constraints and time windows.
Annals of Operations Research, 16, 201–240.

Bellenguez, O., & Neron, E. (2004). Methods for solving the multi-
skill project scheduling problem. In Proceedings of the ninth in-
ternational workshop on project management and scheduling,
Nancy, France.

Benders, J. F. (1962). Partition procedures for solving mixed variables
programming problems. Numerische Mathematik, 4, 238–252.

Benoist, T., Laburthe, F., & Rotternbourg, B. (2001). Lagrange re-
laxation and constraint programming collaborative schemes for
traveling tournament problems. In Integration of AI and OR tech-
niques in constraint.

Benoist, T., Gaudin, E., & Rotternbourg, B. (2002). Constraint pro-
gramming contribution to Benders decomposition: A case study.
In The eighth international conference on principles and practice
of constraint programming, Ithaca, New York.

298 J Sched (2009) 12: 281–298

Bockmayr, A., & Kasper, T. (1998). A unifying framework for integer
and finite domain constraint programming. INFORMS Journal on
Computing, 10(3), 287–300.

Brucker, P. (2001). Scheduling algorithms. Berlin: Springer.
Brucker, P. (2002). Scheduling and constraint propagation. Discrete

Applied Mathematicsu, 123(1–3), 227–256.
Brucker, P., & Knust, S. (1998). Solving large-sized resource-

constrained project scheduling problems. In J. Weglarz (Ed.),
Project scheduling: recent models, algorithms and applications.
Dordrecht: Kluwer Academic.

Brucker, P., & Knust, S. (2000). A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal
of Operational Research, 127(2), 335–362.

Brucker, P., & Knust, S. (2003). Lower bounds for resource-
constrained project scheduling problems. European Journal of
Operational Research, 149, 302–313.

Brucker, P., Drexl, A., Mohring, R. H., Neumann, K., & Pesch, E.
(1999). Resource-constrained project scheduling: Notation, clas-
sification, models and methods. European Journal of Operational
Research, 112(1), 3–41.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks.
Artificial Intelligence, 49(1–3), 61–95.

Dincbas, M., Van Hentenryck, P., Simonis, H., & Aggoun, A. (1988).
The constraint logic programming language CHIP. In Proceedings
of the 2nd international conference on fifth generation computer
systems.

Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper
bounds for the resource investment problem. Journal of Opera-
tional Research Society, 52, 340–351.

Drexl, A., Juretzka, J., Salewski, F., & Schirmer, A. (1998). New mod-
eling concepts and their impact on resource-constrained project
scheduling. In J. Weglarz (Ed.), Project scheduling: recent mod-
els, algorithms and applications. Dordrecht: Kluwer Academic.

Easton, K., Nemhauser, G., & Trick, M. (2004). CP based branch–and–
price. In M. Milano (Ed.), Constraint and integer programming.
Berlin: Springer.

Eremin, A., & Wallace, M. (2001). Hybrid Benders decomposition al-
gorithms in constraint logic programming. Lecture Notes in Com-
puter Science, 2239, 1–15.

Focacci, F., Laborie, P., & Nuijten, W. (2000). Solving scheduling
problems with setup times and alternative resources. In Proceed-
ings of the fifth international conference on artificial intelligence
planning and scheduling.

Fox, M. (2006). Planning for mixed discrete continuous domains. In
J. C. Beck & B. M. Smith (Eds.), Lecture notes in computer sci-
ence: Vol. 3990. CPAIOR 2006 (p. 2). Berlin: Springer.

Fox, M., & Long, D. (2001). Hybrid STAN: Identifying and manag-
ing combinatorial optimization sub-problems in planning. In Pro-
ceedings of the international joint conference on artificial intelli-
gence (IJCAI).

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for
expression temporal planning domains. Journal of Artificial Intel-
ligence Research, 20, 61–124.

Frank, J., & Kurklu, E. (2005). Mixed discrete and continuous al-
gorithms for scheduling airborne astronomy observations. In
R. Batak & M. Milano (Eds.), Lecture notes in computer science:
Vol. 3524. CPAIOR 2005 (pp. 183–200). Berlin: Springer.

Harvey, W., & Ginsberg, M. (1995). Limited discrepancy search. In
The fourteenth international joint conference on artificial intelli-
gence (IJCAI-95).

Hooker, J. (2000). Logic-based methods for optimization: combin-
ing optimization and constraint satisfaction. New York: Wiley-
Interscience.

Hooker, J. (2002). Logic, optimization and constraint programming.
INFORMS Journal on Computing, 14(4), 285–321.

Hooker, J., & Osorio, M. (1999). Mixed logical-linear programming.
Discrete Applied Mathematics, 96–97, 395–442.

ILOG (2002a). ILOG Solver 5.3 User’s Manual.
ILOG (2002b). ILOG CPLEX 8.1 User’s Manual.
ILOG (2002c). OPL Studio 3.6.1 User’s Manual: ILOG, Inc.
Jain, V., & Grossmann, I. (2001). Algorithms for hybrid MILP/CP

models for a class of optimization problems. INFORMS Journal
on Computing, 13(4), 258–276.

Jasen, K. (1999). An approximation scheme for bin packing with con-
flicts. Journal of Combinatorial Optimization, 3, 363–377.

Joslin, D. E., & Clements, D. P. (1999). “Squeaky Wheel” optimiza-
tion. Journal of Artificial Intelligence Research, 10, 353–373.

Lasdon, L. S. (1970). Optimization theory for large systems. New York:
Macmillan Co.

Li, H., & Womer, K. (2006a). Determining crew composition for a new
technology (Working Paper).

Li, H., & Womer, K. (2006b). Project scheduling with multi-purpose
resources: a combined MILP/CP decomposition approach. Inter-
national Journal of Operations and Quantitative Management,
12(4), 305–325.

Li, H., & Womer, K. (2008). Modeling the supply chain configura-
tion problem under resource constraints. International Journal of
Project Management, 26(6), 646–654.

Milano, M., & Trick, M. (2004). Constraint and integer programming.
In M. Milano (Ed.), Constraint and integer programming: toward
a unified methodology. Berlin: Springer.

Nemhauser, G., & Wolsey, L. (1988). Integer and combinatorial opti-
mization. New York: Wiley.

Neron, E., Bellenguez, O., & Heurtebise, M. (2006). Decomposition
method for solving multi-skill project scheduling problem. In Pro-
ceedings of the tenth international workshop on project manage-
ment and scheduling, Poznan.

Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Project
scheduling with time windows and scarce resources: temporal and
resource-constrained project scheduling with regular and nonreg-
ular objective functions. New York: Springer.

Schwindt, C. (1996). Generation of resource-constrained project
scheduling problems with minimal and maximal time lags (Tech-
nical Report WIOR-489). Institute für Wirtschaftstheorie und Op-
erations Research, University of Karlsruhe.

Sellmann, M., & Fahle, T. (2003). Constraint programming based La-
grangian relaxation for the automatic recording problem. Annals
of Operations Research, 118, 17–33.

Thesen, A. (1977). Measures of the restrictiveness of project networks.
Networks, 7, 193–208.

Thorsteinsson, E. S. (2001). Branch–and–check: A hybrid framework
integrating mixed integer programming and constraint logic pro-
gramming. In Proceedings of the seventh international conference
on principles and practices of constraint programming (CP-01).
Berlin: Springer.

Tsang, E. (1993). Foundations of constraint satisfaction. San Diego:
Academic Press.

Van Hentenryck, P. (1999). The OPL optimization programming lan-
guage. Cambridge: MIT Press.

Wah, B. W., & Chen, Y. (2006). Constraint partitioning in penalty for-
mulations for solving temporal planning problems. Artificial In-
telligence, 170, 187–231.

Wallace, M., Novello, S., & Schimpf, J. (1997). ECLiPSe:
A platform for constraint logic programming. Available from:
http://www.icparc.ic.ac.uk/eclipse/reports/eclipse/eclipse.html.

Xing, Z., Chen, Y., & Zhang, W. (2006). An efficient hybrid strategy for
temporal planning. In J. C. Beck & B. M. Smith (Eds.), Lecture
notes in computer science: Vol. 3990. CPAIOR 2006 (pp. 273–
287). Berlin: Springer.

http://www.icparc.ic.ac.uk/eclipse/reports/eclipse/eclipse.html

	Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm
	Abstract
	Introduction
	Project scheduling with multi-skilled personnel
	Problem description
	MILP formulation
	Additional remarks

	CP-based hybrid approaches
	Constraint programming
	Hybrid approaches

	The hybrid Benders decomposition algorithm
	Hybrid Benders decomposition
	Generating cuts
	Global cuts
	Trial cuts
	Infer cuts

	Temporal analysis
	The HBD algorithm

	Computational study
	Experimental design
	Computational results
	The effect of project deadline
	Comparison of algorithm performance
	Multi-factor analysis

	Discussions
	Conclusions and future research
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

