MANAGEMENT OF GLOBAL LARGE-SCALE PROJECTS THROUGH A FEDERATION OF MULTIPLE WEB-BASED WORKFLOW MANAGEMENT SYSTEMS

Abstract

With globalization and the networked world of today, there is a dire need for a reliable and efficient model to manage, monitor, and control global large-scale projects (GLSPs), which contain thousands of workflows and hundreds of organizations located at different sites. Companies are faced with an increasingly competitive and hostile environment. The terms "information exchange," "compatibility," and "interoperability" have become ubiquitous in this environment. To survive, companies will have to constantly develop newer and better methods for managing and controlling the execution of GLSPs. Those projects cannot be managed efficiently and effectively without Web-based models that automate the business processes and extend them beyond the organization, and fill the information needs of project parties at all levels, from individual team members to high-level managers.

This paper proposes a conceptual framework for a Web-based information and project management (WBIPM) model that enables the GLSP management team (1) to monitor, control, and coordinate the execution of multiple workflows operating within, across, or between organizations, and (2) to coordinate information flow from the time it is created until it is eliminated and to share this information among all project members.

This proposed Web-based model builds a collaborative network that brings together any customer, supplier, or partner, and it is especially helpful in situations where project members are located at different sites.

Keywords: global large-scale projects; workflow management systems; project management software

A project is a problem scheduled for solution. This definition emphasizes the problem-solving nature of project business in general. Once the problem or objective is defined, then the most suitable solution is allocated in accordance with predefined time constraints. By adding to this definition, the preset budget, temporarily grouped organizations, a minimum of a decade's duration, a technologically nontrivial nature, and global industrial and public collaboration, we have the main features of a large-scale project (Hameri, 1997).

Large-scale projects contain thousands of workflows, hundreds of organizations, and different resource allocations. Numerous parties—sponsors, prime contractors, subcontractors, consultants, and suppliers—are involved in achieving the project goal (Nicholas, 2001).

Several documentary research findings (Lewis, 1993; Morris & Hough, 1987) regarding large-scale projects (e.g., Euro-tunnel linking England and France) indicate that some of the fundamental problems of failing to achieve the project goals in keeping with the set timetable and budget originate from: (1) ignorance of what other project teams are doing; (2) poor reactivity to sudden changes in the project environment; and (3) lack of discipline in design change control. Hameri (1997) argues that those problems are communication related.

Large-scale projects usually are based on temporarily grouped organizations that require communication mediums and protocols to manage geographically distributed design, engineering, and production activities. Communication is important not only when something must be accomplished, but also throughout the entire project. Controlling and measuring the project communication flow considerably enhances the potential for a more profound understanding of the project's status and progress. However, successful project management must not be performed as an isolated activity within the company, rather project quality management requires the involvement of and information sharing between project members (Heindel & Kasten, 1997).
Motivation

With globalization and the networked world of today, there is a trend toward decentralized teams, multi-site projects (Nicholas, 2001), and dispersed organizational structures. It is becoming increasingly difficult for project management systems to cope with global large-scale projects (GLSPs) effectively (Duffy, 2000) in terms of control over execution and information sharing among all levels of project members.

Managing GLSPs effectively differs from traditional large-scale projects because time, distance, and dependence on communication technologies in decision-making adds complexity to interactions between project members (Weiss & Thamhain, 2001).

As a consequence, managing GLSPs presents new, and in many respects, more difficult challenges. In an effort to manage their GLSPs effectively, companies have used a variety of information technologies, such as project management information systems, Web-based project management software (PMS), workflow management systems (WFMSs), videoconferencing, audioconferencing, and e-mail (McDonough & Cedrone, 2001; Meckl, Breu, & Sametinger, 2001; Nicholas, 2001; Shih & Tseng, 1996). However, each of those systems has its limits and drawbacks.

E-mail and videoconferencing are helpful tools for communicating and holding a team meeting in which the members are geographically dispersed (Mead, 1997). But those systems are tedious to maintain and require numerous support personnel to manage and exploit their outputs for analysis (Nicholas, 2001).

The goal of the WFMS is to control the workflow among all members of a group that are involved in a certain business process (Shih & Tseng, 1996). The WFMS is already being applied within companies in various departments (e.g., manufacturing—an exchange of data and process information between the consumer, manufacturer, and suppliers of raw materials). What we still lack is the utilization of this system across companies (Meckl, Breu, & Sametinger, 2001). Information and communication systems based on open and platform-independent architectures can overcome the geographic boundaries of workplaces.

Although there are many commercially available PMS packages, most have deficiencies in both the content and structure of their databases. Typically, these databases are proprietary and not suitable for access and update by the PMS itself (Heindel & Kasten, 1997). Thus, the limitations of the databases and the incapability of the system to interface with other systems from which existing data files have been created are the main drawbacks of the current generation of PMSs. In addition, PMSs are useful in the early project phases of planning and definition. For procedures that require the capability to integrate time, cost, and performance information to distribute this information through the Internet quickly and efficiently, PMSs seem the only practical means. But once the project begins, PMSs provide little assistance in controlling the quality of execution of individual tasks (inspection functions). In practice, however, inspection functions, which ensure that tasks are executed according to specifications and standards, are carried out through standard and repeatable processes (e.g., receiving intermediary results from the contractor, checking those results, giving the order to the contractor to continue, receiving final results, checking them, confirming the completion of execution, in addition to managing the circulation of different documents related to the activity under execution). However, the WFMS seems to be the best tool for supporting those processes, especially in GLSPs where the execution of hundreds of activities must be controlled simultaneously.

The PMS and WFMS must be interoperable and compatible. They must be fully interfaced with each other and with other systems being used on the project (Jaafari & Wong, 1994).

Both a review of current systems and other studies (Churcher, Johnson, Howard, & Wager, 1996; Jaafari & Manivong, 1998) confirm that most of the current systems are not based on the latest technological advances in computing and IT. Any system developed today must be flexible enough to allow for the integration of a range of emergent IT technologies, to the greatest extent possible. Correct system architecture also will be necessary to take advantage of the advances made in the science and art of computing (Jaafari & Manivong; Jaafari & Wong, 1994).

Due to the current system limitations, there is a dire need for reliable and efficient systems that allow geographically dispersed organizations to manage, monitor, and control their GLSPs and to share the project information more easily and with less expenditure of time and effort.

This paper proposes a conceptual framework for a WHPM model that enables the GLSP management team first, to monitor and control the execution of multiple workflows operating synchronously within, across, or between organizations, and second, to coordinate information flow from the time of its creation until its elimination and to share this information among all project members.

This model supports a collaborative network that brings together any customer, supplier, or partner, regardless of the software they are running. The proposed Web-based model is especially helpful in situations where project partners are located at different sites.

The model is based on integrating a wide range of up-to-date, Web-based IT applications. A WFMS, Web-based PMS, mobile agents (MAs), and a dynamic database management system are interconnected to support the model. The authors believe that integrating the functions of those IT applications will lead to overcoming the aforementioned limitations.

The model yields benefits for all parties in the project. Some of those additional benefits are immediate electronic updating of the project progress status, efficient and easy communication between all project parties, immediate availability of project information, and measurement of project performance.

Those benefits allow GLSP management teams to iden-
tify problems while they are small, meet deadlines, ensure quality control, and manage the costs of the project, all of which help minimize project risk.

In the next section, the generic architecture for the WBIPM business model will be introduced and described. An overview of the four main entities and their roles will be given, in addition to a comparative study of the function of the WFMS and the PMS. The concept and process management of the WBIPM model will be presented and discussed and some conclusions will be offered.

A Generic Architecture for the Business Model

One possibility for developing this model was to create its tools from scratch. But this would have been a major mistake, as it would have discarded all the existing work and know-how developed by numerous research and development projects. Therefore, our position was to try to combine the most interesting aspects of the existing IT applications and tools and add the necessary elements whenever required.

The overall model architecture is shown in Figure 1. The management team (MT) of the GLSPs sets up the e-platform. The goal is to enable project members to browse it, through a user-friendly graphical interface, and see all the information and data related to the tasks they have to perform. All that project members need to gain access to the e-platform is a Web browser, such as Internet Explorer or Netscape, which is available on any computer with Internet access, and a password provided by the MT. As shown, this e-platform contains four main entities that integrate and cooperate to produce benefits for all project partners.

The first entity in the architecture is a web-based PMS package. In the design of the proposed model, existing PMS is used as a planning and monitoring tool. It has the capability for planning, budgeting, and controlling the projects and functions as a means for collecting, organizing, storing, processing, and disseminating the information.

The second entity is a central web-based, object-oriented database management system (OO-DBMS), which serves as a repository for all dispersed project data and project-related information. The OO-DBMS involves the data itself and the software that controls the storage and retrieval of data and provides mechanisms for storing and organizing data in a manner that facilitates the satisfaction of sophisticated queries and eases data manipulations.

The third entity in the structure is the WFMS. It is designed to assist the GLSP MT in carrying out work procedures through more effective use of organizational knowledge of resource requirements and workflow. The workflow technology has been reported to be effective in specifying, executing, and coordinating the flow of tasks within a distributed environment, while reinforcing flexibility (Koska, Cingil, & Dogac, 1999). In the proposed model, the WFMS

![Figure 1. The Architecture of the WBIPM Model](image-url)
is used to ensure that task execution is achieved in keeping with desired requirements and specifications.

The fourth entity in the structure is a MA. It is endowed with sufficient intelligence to act autonomously in certain circumstances and can be empowered to make responsible decisions on behalf of its principals. The aim is to reduce the time and effort required to update the database and the PMS.

Project Management Software (PMS)

In the proposed model, a Web-based PMS package is used. It provides the means for monitoring the network of tasks—e.g., identification of tasks, resource requirements and costs, establishing priorities, planning and updating schedules, and measuring project performance (Nicholas, 2001).

The monitoring function must ensure management receives reports in sufficient detail and frequency to enable them to identify and correct problems early. The reports include information on overall project performance, such as percentage of work completed, milestones reached, budgeted cost and actual cost, and so on. This software has the following features and capabilities: (1) scheduling and network planning—using a network-based procedure (PERT and CPM); (2) resource management—performs resource loading, leveling, allocation, or multiple functions; (3) budgeting—associates cost information with each activity; and (4) cost control and performance analysis—the system can compare actual performance (actual costs and work completed) with planned and budgeted performance.

However, once the MT configures the PMS on their local computer, the MT upload it to the e-platform so that it will be available for all project members. The PMS in this model can integrate network, budget, and resource information and allow for quick review and easy periodic updating and filters and reduces data to provide information on summary, exception, or what-if questions under various scenarios while the project is under way (Nicholas, 2001; Roman, 1986).

Database Management System

The database layer contains structural information such as constituent tasks, their dependencies, expected duration, and the responsibilities, resources, and routines associated with them. The database also contains real-time information about the current status of the project as well as historical data (Shih & Tseng, 1996).

The current generation of PMSs and WFMSs use the relational database management system (RDBMS). The relational database model is a logical representation of the data that allows the relationships between the data to be considered independently of the physical implementation of the data structures.

Today, e-business applications demand more complex information, and the database that supports them must deliver complex data scalability and extensibility. The traditional RDBMSs are not best suited for Web data because they understand only limited and simple types of data (integers, dates, floating points, character strings, date/time, and cost).

To overcome those limitations, the model presented uses a central Web-based, multiuser, OO-DBMS. The OO-DBMS focuses specifically on complex transactions, unlike the RDBMS. It allows for the addition of complex data, functions, and access techniques to the core engine. This database will serve both the project management and WFMS. Access to the database is provided for multiple, simultaneous users. The main advantage of having a central Web-based OO-DBMS is that the data required for the project members can be taken immediately from this database, and the results derived from the execution of the tasks and activities can be transferred immediately to the database. The features of this database are specifically suited to the demands of the authors’ model. It pages for real-time complex search capability allows users to combine decision support with transaction processing, gateways to legacy relational databases to support linking back-end data to the WBIPMS and giving it content veneer.

Workflow Management System (WFMS)

The importance of workflow and process technologies is increasing today as we see a convergence of communications connectivity and software tools for collaboration among computer systems (Koskal, Cingil, & Dogac, 1999). WFMSs, which provide the tools and functionality to design, implement, and automatically coordinate the execution of business processes, also have received great attention in recent years (Jablonski & Bussler, 1996).

In the WFMS, the procedures for performing the business processes are standardized by a set of sequential rules. Each task, when finished, automatically initiates the next logical step in the process until the procedure is complete (Shih & Tseng, 1996).

Modern WFMSs allow resources to execute the work steps from anywhere thanks to Web-enabled access for enhanced end-user access. Work also is under way for enabling inter-operability between different WFMSs, allowing interorganizational processes to be executed over heterogeneous systems (Ben-Shaul & Kaiser, 1998; Casat, Ceri, Pernice, & Pozzi, 1996: Workflow Management Coalition, 1996) and “wide-area” workflow management (Badir, Stricker, & Dalla Pinka, 2001; Riempp, 1998).

In this model, the WFMS has two main functions, first of which is controlling the quality of execution through a standard process, and second, is automatically updating the OO-DBMS as to the status of execution.

Tasks in PMSs and WFMSs

Tasks have long been considered the fundamental building blocks in both project management and business processes. The differences lie in the network of tasks.

In PMSs, tasks are connected on an ad-hoc basis and deal with a one-time effort for a unique and specific goal. On the other hand, in business processes, tasks are aligned on a more steady-state basis, where the primary goals are the achievement of efficiency and consistency. The business process originated from the practical needs of introducing
consistency and repeatability in handling diverse business transactions. While there seems to be a wide variety of requests and possible combinations of tasks to fulfill these requests, the underlying assumption is that there is similarity among tasks. By deducing the similarities of tasks, task patterns can be introduced. In this way, processes can be effectively carried out by repeating these established patterns (Shih & Tseng, 1996).

Mobile Agent Technology

An MA is a problem-solving entity that has autonomy, proactivity/goal orientation, reactivity, and social ability (Wooldridge & Jennings, 1995). Individual agents can be endowed with sufficient intelligence to act autonomously in certain circumstances and can be empowered to make responsible decisions on behalf of their principals (Corradi, Cremonini, Nontanari, & Stefanelli, 1999; Nissen, 2000). Using MAs in the proposed model reduces time and effort required to complete transactions.

Groups of agents participating in multi-agent systems can collaborate through federations to solve problems too large or complex for individuals to address themselves (Nissen, 2000). This supports close coupling and tight integration between the GSLP MT and provider organizations.

Adding mobility to software agents increases the applications' potential in the e-commerce area. To accomplish their goals, the MAs act not only autonomously, by negotiating on behalf of their creators, but also can decide to move from one place (e.g., WFMS, marketplace, etc.) to another as necessary (Kotz, Gray, Nog, Rus, Chawla, & Cybenko, 1997). In addition, they are adaptive and capable of learning from both past actions and their environment to cope with changing network conditions and evolving user requirements (Nwana, Rosenschein, Sandholm, Sierra, Maes, & Gutman, 1998).

In the proposed model, these features permit MAs to overcome the limitations of direct negotiations between the MT and its workflow providers in the execution phase. The benefits of using MAs in this business model are:

- Providing value-added services by maintaining data bases about activities and services. This information can then be selectively directed to the MT and other project partners and providers;
- Updating the data and information in WBIPMS;
- Managing the information traffic flow between the MT and its workflow providers;
- Filtering of incoming information;
- Profiling users according to the working practices and preferences of MT and providers.

Agent-Based Workflow Systems

In the proposed model, an agent-based workflow system facilitates integration and communication between different types of WFMSs. Most WFMSs utilize client/server architecture. The workflow server is a central component whose reliability is a problem because all clients must maintain a connection to this server. Furthermore, especially in interorganizational workflows where heterogeneous WFMSs are used, the communication between the systems is difficult and standardization is lacking. To overcome this problem, an agent-based workflow is used. The agent-based workflow is a workflow in which agents perform, coordinate, and support the whole workflow or parts of the workflow. In the agent-based workflow system, there exist different agent types that manage the workflow.

Work already has been done on this topic (Loke & Zaslavsky, 2001; Meng, Helal, & Su, 2000; Stormer, 2000). Such a workflow agent knows all the tasks that must be done, and the time of their execution. The agent searches for subjects capable of executing the next task. When a subject is found, the agent moves directly to it and provides the data items needed so the subject can fulfill the task. This approach has the main advantage that no central server is required during the run time of a workflow, which has a positive effect on the reliability of the system. Another important advantage for using mobile agents in workflow systems based on web services is the suitability of asynchronous communication in this environment.

Conceptual Framework of the WBIPM Model

In this paper, a Web-based information and project management (WBIPM) model that will serve both the workflow and the network of tasks is proposed. The model supports monitoring the network of tasks, controlling workflow execution, managing resources, and sharing the information.

Basically, the model ensures that the WFMSs of the MT and its providers communicate among themselves for controlling the execution of workflow, automatically updating the PMS database online while project execution in progress, and sharing up-to-date information with project members.

To enable timely and effective project control, the project must be systematically tracked and observed. This requires setting up project control, monitoring, and reporting functions. These functions are composed of three main phases. The first phase is controlling the execution of workflow; the second is monitoring the network of tasks; and the third is reporting and information sharing. These phases are shown in Figure 2.

Controlling the quality of execution of workflow (inspection functions) is a repetitive process. Whatever the task (construction, manufacturing, software development, etc.), the process of inspection is the same. In the authors' model, this repetitive business process is supported by the WFMS. This phase is important in GLSPs, where hundreds of tasks are executed asynchronously. Without such a model, the MT must make an appreciable effort to control the inspection functions and ensure that tasks are executed according to the standards and specifications.

Figure 3 shows the interaction between the WFMSs of the MT and its provider in handling this phase.

As shown, all communication between the MT and its providers will be conducted directly through their WFMSs.
This is to ensure two main points. First, task execution is under control. Second, current information from all project sites is entered into the project database. The WFMS of the MT is the only way to update—automatically via the MA—the Web-based OO-DBMS as to the state of progress. The idea is: (1) to avoid multiple data entries, each using its own data modeling and structure, and (2) to overcome the difficulties of information coordination across the project.

Obviously, milestones and progress reported through the WFMS affect the PMS. As soon as the OO-DBMS is updated, the MA will make the necessary changes in the PMS, such as percentage of work completed, milestones reached, a comparison of actual and planned costs, and so on. Those functions aim to minimize the project risk, in terms of quality, time, and cost.

The third phase in this model is reporting and information sharing. The online updated PMS provides quick and different levels of review that can be understood by different levels of people, namely project managers, task leaders, and project members. The model ensures that timely information outputs are distributed to the people who need them. The information includes revised budgets, modified schedules, and recommended action. Full and summary reports can be prepared in HTML, Microsoft Word, and/or Microsoft Excel format. At the same time, all project members can navigate, filter, sort, and explore information over the Internet using their web browsers.

To enable effective reporting and information-sharing, two activities must be carefully handled. The first is the balance between reporting too much or too little data. Too much data is costly to collect and process and will be ignored; too little does not capture the project status and allows problems to go unchecked. The second is the time of reporting. Project members should receive reports at the right time to enable them to identify and correct problems while they are small.

Conclusion

With globalization and the trend toward decentralized teams, more projects have team members that are geographically dispersed, which poses problems for GSEE programming and control. One way around this problem is use of Web-based systems to control the project and gather and distribute project information.

This paper has proposed a conceptual framework for a WBIPM model that will serve both the workflow and the network of tasks. The model supports monitoring the network of tasks, controlling workflow execution, resource management, and information-sharing.
Specifically, the model enables the project management team of the GLSPs to monitor and control the execution of multiple workflows operating synchronously within, across, or between organizations, and then, to coordinate information flow from the time it is created until it is eliminated and to share this information among project members.

The model brings benefits to all parties in the project. Some of those benefits are immediate electronic updating of the project progress status through a single entry point for project data, efficient and easy communication between all project parties, immediate availability of project information, and measurement of project performance. These benefits allow the MT of GLSPs to identify problems while they are small, meet deadlines, ensure quality control, and manage the costs of the project. The tight follow-up processes that are inherent in the model will lead to minimized project risk.

Although the proposed model provides the means for reducing GLSPs risk, the authors plan to extend the model to cover risk management issues (e.g., risk measurement, impact and consequences, and appropriate ways of dealing with risks), and to customize the WIMS to track risk response and handle risk management.

References

YUOSRE F. BADIR is a research associate in the Institute of Logistics, Economics, and Management of Technology (IILEMT), at the Swiss Federal Institute of Technology-Lausanne (EPFL). He received a BS in civil engineering from the University of Garouia, Libya, an MS in project management from the University of Putra Malaysia, and an MS in logistical management from the EPFL. His current research interests include project management, innovation, and product development, and business process management. He has published several academic articles in these areas.

RÉMI FOUNOU is a PhD candidate and working as a research assistant at IILEMT at the EPFL. He received both a civil engineering degree and his postgraduate degree in logistics management from the EPFL. Before joining the IILEMT, he worked as a distribution planning manager for Procter & Gamble. His current research interests include logistics and organizational management on which he publishes regularly.

CLAUDE STRICKER holds a PhD in economics science from the University of Lausanne, an MS in business information systems and a BA in business administration from HEC Business School. He is director of the International Academy of Sport Sciences and Technology in Lausanne, a foundation providing multi-field expertise in the domain of sports education and research. He also is a professor at the University of Applied Sciences Western Switzerland. He has more than 15 years of experience in IT research and consulting in Switzerland and the U.S., where he was a visiting professor at the University of Hawaii. He is the co-founder and consultant of several startups in the domain of electronic commerce and IT. He has authored and co-authored more than 30 research articles in scientific journals and proceedings.

VINCENT BOURQUIN holds a PhD and MS in mechanical engineering from EPFL. He is co-founder of InTech Development Ltd., a company with the following sectors of activities: consulting in management, information systems, and systems engineering. He has led several projects related to the development of new high-performance products for transportation systems and space research. His interests include complex project management, innovation, and product development, business process management, and companies network management. He has authored and co-authored several research articles in scientific journals and proceedings.