Substitution Variables

Inserting rows into a table is a very tedious task. In real‑life tables, we are talking about thousands of rows per table!

There are screen designers, form creators, and so on. An SQL statement does not have those fancy controls or buttons. The SQL

language does have substitution variables, which enable you to create interactive

SQL> INSERT INTO dept (DeptId, DeptName, Location, EmployeeId)

2
VALUES (&dept,_id,'&dept,_namef,'&location', &emp__.,id);

Enter value for dept~_id: 70

Enter value for dept~_name: Testing

Enter value for location: Miami

Enter value for emp__.,id: NULL

1 row created.

Figure 5‑1 Substitution variables.
U

SQL script. When you execute the script, Oracle prompts you to enter a value for the substitution variable. 'Ihe ampersand (&) character is used before the substitution variable in the query. The substitution variables for character and date type columns are enclosed within a pair of single quotation marks. Figure 5‑1 shows the use of substitution variables and the interactive prompts displayed by Oracle.

Question: You just ran the SQL statement in Fig. 5‑1. How will you insert the next record using the same statement?

Answer: The last SQL statement is in the buffer, so you will type a slash to re‑execute the statement from the buffer. If you stored the statement in a file, you can execute the same file again with the RUN or @ command.

 CUSTOMIZED PROMPTS

The substitution variable prompts are standard. Oracle displays'Enter the value for' followed by the name of the substitution variable. The SQL*Plus command ACCEPT is used for customized prompts. The ACCEPT command does not use an ampersand in front of the variable name. ACCEPT in fact accepts values for substitution variables that can be used later in other statements. If an ACCEPT statement is used for a variable, the value of that variable, once entered, is remembered during the session. You might not want to use the ACCEPT statement for a variable to be used later in more than one INSERT statement.The general syntax is

ACCEPT variablename PROMPT 'prompt message'

For an example, see Fig. 5‑2.

ACCEPT dept ‑ id PROMPT 'Please enter a department number (10 to 99): ‘

ACCEPT dept ‑ name PROMPT 'Please enter department name: ‘

ACCEPT location PROMPT 'Please enter location city: ‘

ACCEPT emp_id PROMPT 'Please enter manager Id: ‘

INSERT INTO dept (DeptId, DeptName, Location, EmployeeId)

VALUES (&dept id,'&dept‑name','&location1, &empid);

Figure 5‑2 Custom prompt with ACCEPT

Displaying Table information

Viewing a Table's Structure

You can display the structure entered by you in a CREATE TABLE query. If you have made any changes to the table's structure, the changes will also show in the structure's display. Figure 4‑7 shows the SQL*Plus command to view a table's structure. The command is DESCRIBE (or DESC), which does not need a semicolon at the end because it is not a SQL statement. Notice that the default display of column names, the NOT NULL constraint, and data type is in uppercase. You did not add a NOT NULL constraint for the primary key, but by default Oracle adds it for all primary key attributes.

SQL> DESCRIBE student

Name
 Null? Type

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑ ‑‑‑​

STUDENTID
NOT NULL
 CHAR (5)

LAST
NOT NULL
 VARCHAR2 (15)

VARCHAR2 (15)

FIRST
NOT NULL
 VARCHAR2 (15)

STREET

 VARCHAR2 (25)

CITY

 VARCHAR2 (15)

STATE

 CHAR (2)

ZIP

 CHAR (5)

STARTTERM

 CHAR (4)

BIRTHDATE

 DATE

FACULTYID

 NUMBER (3)

MAJORID

 NUMBER (3)

PHONE CHAR (10)

Figure 4‑7 DESCRIBE command and table's structure.

Viewing Constraint Information

Oracle's system table USER‑CONSTRAINTS stores information about constraints you have entered for each column. Figure 4‑8 shows the query and the result, which includes the constraint's name and type. When you type the query, the table name must be typed in uppercase because Oracle saves table names in uppercase. If you type the table name in lowercase, no constraint names will be displayed.

The constraints named by the user have more meaningful names than the ones named by Oracle. Constraints like NOT NULL are usually not named by the user. Oracle names them using the SYS_Cn format, where n is any number. Constraint type C is displayed for NOT NULL and CHECK constraints. Constraint type P is for primary key, and type R is for foreign key constraints. You will type only the first two lines of the query in Fig. 4‑8 to display all constraints in your account.

SQL> SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE

 2
 FROM USER_CONSTRAINTS

 3 WHERE TABLE_NAME = 'STUDENT';

CONSTRAINT_NAME
CONSTRAINT_TYPE

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑​

SYS_CO01675
C

SYS_CO01676
C

SYS_CO01677
C

STUDENT_STUDENTID _PK
P

Figure 4‑8 Constraint information.

You can use the following command to see the constraint names and associated column names:

SELECT CONSTRAINT_NAME, COLUMN_NAME

FROM USER_CONS_COLUMNS

 WHERE TABLE_NAME ='STUDENT';

In this statement, only the table name within single quotes needs to be in uppercase because Oracle stores table names in that case.

Outer Join

You saw in the equijoin that the rows from two tables are selected only if the common attribute values are same in both tables. If a value in one table does not have a matching value in the other table, it is not joined. Fig. 6‑2 displayed all students from the STUDENT table and their advisors from the FACULTY table. Some of the faculty members are not any student's advisor, so they did not get picked. Suppose you also want to see all those faculty advisor names. You would change your query's join condition and create a join known as an outer join.

The table that does not contain the matching value is known as the deficient table. In our case the deficient table is the STUDENT table because it

does not contain all faculty ID. The outer join uses the (+) operator in the join condition on the deficient side. The (+) operator can be used on any side of the join condition, but it can't be used on both sides in one condition. The general syntax is

SELECT tablename1.columnname, tablename2.columnname

FROM tablename1, tablename2

WHERE tablename1.columnname(+) = tablename2.columnname;

The join condition will look different if the (+) operator is used on the right hand side. For example,

WHERE tablename1.columnname = tablename2.columnname(+);

Figure 6‑7 shows an outer join using STUDENT and FACULTY tables. The outer join operator (+) is used on the STUDENT side because it is the deficient table. Compare the output in Fig. 6‑7 with the output in Fig. 6‑2. The outer join also includes three faculty members who are not advisors to any students.

SQL> SELECT student.Last ‘, ‘ student.First AS STUDENT,

2
faculty.Name AS ADVISOR

3
FROM student, faculty

4 WHERE student.FacultyId (+) = faculty.FacultyId;

STUDENT
ADVISOR

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

‑‑‑‑‑‑‑‑‑‑‑‑‑‑​

Diaz, Jose
 Mobley

Tyler, Mickey
 Chang

Patel, Rajesh
 Jones

Rickles, Deborah Chang

Lee, Brian
 Sen

Khan, Amir
 Williams

 Vajpayee

 Rivera

 Collins

9 rows selected

SQL, Supplementary examples:

1) Display all item prices rounded to the nearest dollar

SELECT ItemName, ROUND (ItemPrice, 0)

 FROM item;

2) Use an outer join to display items ordered as well as not ordered so far

SELECT x.ItemNo, y.InvNo

 FROM itemx, invitem y

 WHERE x.Item.No = y.Item(+)

3)Find the items with the top three prices

Select ROWNUM, ItemName, ItemPrice

 FROM(SELECT ItemName, ItemPrice FROM item

 ORDER BY QtyOnHand;

WHERE ROWNUM <=2;

4) Create a view that will display invoice number and customer names for NJ Customers

CREATE OR REPLACE VIEWnj_cust_vu

AS

SELECT InvNo, CustName

 FROM invoice, customer

 WHERE invoice.CustNo = customer.CustNo

 AND UPPER(State) = ‘NJ;

WITH CHECK OPTION;

Note: “Check option permits insert and updates through the veiw into the base table, if READ ONLY is specified, changes to base table are not allowed through this view”

5)Create a sequence that can be used to enter new items into the item table

CREATE SEQUENCE itemnum_seq

 INCREMENT BY 1

 START WITH 7

 MAXVALUE 99

 NOCYCLE

 NOCACHE

 ORDER;

6) Add a new item into the item table with the sequence just created

 INSERT INTO ITEM

 VALUES(itemnum_seq.NEXTVAL, ‘Scissors’, 7.95, 100);

7) Create a synonym for the invitem table

 CREATE SYNONYM ii

 FOR invitem;

