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The properties of Rydberg atoms are contrasted with those of hydrogen atoms using both classical
and quantal points of view. It is shown that, classically, the effects of the ionic core of the Rydberg
atom produce a precession of the otherwise Keplerian elliptical orbit of the excited electron, and
that this precession is responsible for the nonhydrogenic properties. Using the correspondence
principle, classical properties are then related to quantum mechanical properties by correlating
the precession frequency with the quantum defect §,. The linear and quadratic Stark effects are
also discussed and it is shown that a negative polarizability of the atom is a consequence of a
positive d8,/dl. In the Appendix, the “gravitational defect” associated with the precession of the
perihelion of the Keplerian orbit of the planet Mercury is presented.

I. INTRODUCTION

Although the hydrogen atom serves as a convenient
starting point for description of physical phenomena in-
volving multielectron atoms, significant differences exist.
This is because the favored status of the 1/ potential in
nature, the special symmetry of this potential, endows the
hydrogen atom with unique properties. An example of the
inapplicability of hydrogenic properties to multielectron
atoms is the weak field Stark effect. If the electric field is
high enough to produce energy shifts that are large com-
pared to fine structure splittings, but smaller than the dif-
ferences between field-free states, the hydrogen atom ex-
hibits a linear Stark effect. Because the accidental
degeneracy peculiar to the 1/7 potential is broken by inter-
electron repulsion in multielectron atoms, the first-order
terms vanish, and the Stark shifts are quadratic in electric
field.! Of course high-lying singly excited states, frequently
referred to as Rydberg states, behave, in many ways, as
states of hydrogen atoms. Nevertheless, the small non-
Coulombic potential of the ionic core causes the Stark
structure of even these highly excited atoms to deviate sub-
stantially from that of hydrogen atoms.

In spite of these differences, or in fact because of them, it
is instructive to use the hydrogen atom as a standard for
comparison. The deviations from hydrogenic behavior can
provide insight and thus lead to a fuller understanding of
the effects under study, as well as a greater appreciation for
the uniqueness of the Coulomb and gravitational poten-
tials. As discussed in an earlier publication? (hereafter re-
ferred to as I), examination from a classical point of view
permits visualization of the effects. We therefore present in
this paper a classical picture of some properties of Rydberg
atoms, and use the correspondence principle to relate this
classical picture to quantal properties.

I1. THE QUANTUM DEFECT

For simplicity we consider Rydberg states of “one elec-
tron atoms,” for example the alkalis, in which excited
states are formed by promotion of a single electron outside
a closed, or nearly closed, core of Z — 1 electrons. For hy-
drogen, the energy levels are given by the Rydberg formula

E,= —1/21%, (N
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where n is the principal quantum number; atomic units are
used throughout. It is found that a formula for the energies
of atoms in Rydberg states (Rydberg atoms) can be writ-
ten in a way that is reminiscent of Eq. (1):?

E, = —1/2(n—6,)% (2)

where §,, the quantum defect, is a function of the angular
momentum / of the excited valence electron, the Rydberg
electron. While §, depends on /, it is virtually independent
of n. Thus although Eq. (2) is similar in appearance to the
Rydberg formula for hydrogen, it is clear that the acciden-
tal degeneracy of hydrogen is broken in the multielectron
atoms. Nonetheless, for Rydberg atoms, the energies of all
states of a given value of / are obtained from a single value
of 8,; each such set of states is called a Rydberg series and
the atoms are therefore referred to as Rydberg atoms.

Those states that are the most nearly hydrogenic will be
characterized by very small values of §,. This must corre-
spond to states of sufficiently high angular momentum to
cause the Rydberg electron to avoid the core, thereby mini-
mizing its effect on the motion. Table I contains a listing of
the quantum defects for the first few Rydberg series’ of the
alkali atoms. It is generally the case that &, is small for
values of / that are greater than the maximum angular mo-
mentum of a core electron® /.., as is illustrated in the
table. Notice also that a value of §, > 1 indicates that the
ordering of the / states, as designated by the values of n, has
been altered from that of hydrogen.

In addition to the utility of the quantum defect in provid-
ing a simple formula for the energy levels, it also represents
the shift in phase, as compared to hydrogenic wave func-

Table 1. Maximum angular momenta /... and quantum defects &, for the
alkali atoms. (Adapted from Ref. 3.)

Atom Lo [=0 I=1 1=2 I=3
Li 1 0.40 0.04 0.00 0.00
Na 2 1.35 0.85 0.01 0.00
K 3 2.19 171 025 0.00
Rb 4 3.13 2.66 1.34 0.01
Cs 5 4.06 3.59 2.46 0.02
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tions, of the multielectron wave functions.” Thus the desig-
nation of the quantum defect by the symbol &, is not coinci-
dence. It is, as for unbound systems, the phase shift due to
scattering of the electron by the core. This leads to a classi-
cal picture of the Rydberg electron executing a nearly Ke-
plerian orbit when far from the core, but having this orbit
altered each time it encounters the core.

II1. MULTIELECTRON ATOMS IN FIELD-FREE
SPACE

The major contribution to §, results from deviations to
the 1/r potential as the electron penetrates the ionic core.*
For high angular momentum states, however, core pene-
tration becomes vanishingly small, but relativistic effects
become important.* Since, in this paper, our attention is
directed toward a classical depiction of the Rydberg atom,
we consider states of relatively low angular momentum,
but for which />17_,,. (see Table I). For such states, the
major contribution to the quantum defect is from polariza-
tion of the ionic core by the valence electron.

To examine the consequences of core polarization it is
necessary to include in the Hamiltonian the multipole ex-
pansion of the potential energy of the core. The two most
important terms in this expansion are the induced dipole
and induced quadrupole terms. Thus the Hamiltonian can
be written

H = Heqpomy — Qa/2F* — a, /27", 3

where Hcyyomp i the hydrogen Hamiltonian, @, and a,
are the dipole and quadrupole polarizabilities, respectively.
Note that the potential in this Hamiltonian is still a central
potential and total angular momentum is therefore con-
served. Thus quantum mechanically / is still a good quan-
tum number; classically the motion of the Rydberg elec-
tron is still confined to a plane.

For our conditions 8, €7 and we may approximate Eq.
(2) by
E,~ —1/2n*—§8,/n’, (4)

so the first-order corrections to the hydrogenic energies are
proportional to n ~*. Furthermore, using the notation of
Freeman and Kleppner* and the conditions on / imposed in
this paper, we may write 6, as

61 = 6pol = 5gol + 5301’ (5)

where the terms on the right represent the contributions of
dipole and quadrupole polarizabilities, respectively.

For classical orbits with these restrictions on /, the non-
Coulombic terms in the potential are small because the
electron avoids the core. In accordance with Kepler’s sec-
ond law, which applies to any central potential, a major
fraction of the orbital “period” is spent at large values of »
on a very nearly Keplerian ellipse with period 7 = 271>, as
given by Kepler’s third law. We may therefore compute the
energy of the Rydberg electron by averaging the Hamilto-
nian over an orbital period. In this picture, the polarizabili-
ty leads to the quantum defect. Mathematically the corre-
lation is clear because the average of Hcyomp corresponds
to the hydrogenic energy.

We may, using classical orbits, evaluate the individual
contributions to 8,; the average values (~*) and (r~¢)
over a Keplerian orbit are required. We have
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(r=m=

1 Jr""dt. (6)
0

2mn?

Using plane polar coordinates (7,¢), Kepler’s second law
(conservation of angular momentum) is 7¢ =/ and the
equation of the elliptical orbit resulting from a pure Cou-
lomb potential is

r=1%/(1+ €cos ¢), (N

where € is the eccentricity. Together with df = d¢/¢ these
relationships lead to

l(3—2m)

—3—f (1 4 € cosg) ™~ 2dg. (8)

27n

(r=m) =

Integration of Eq. (8) with m = 4 and with m = 6 yields
("_4>=(1_5/n3)[1+(%)€2] (9
and
(r'6)=(l“9/n3)[1+362+ (g)e“]. (10)

Since both {r ~*) and (r ~ ®} are proportional to n 3, and
8, is the coefficient of n ~* in the equation for the energy,
Eq. (4), the contributions of the polarizabilities to &, are
readily obtained.

Now €® = (1 — I?/n?) (See Table I of I) sothat Egs. (9)
and (10) may be cast entirely in terms of / and n. Further-
more, since / 2/n” € 1 we may ignore terms higher than first
order in / /n. The results are

6301 = (%)adl -3 (11)
and
8y = Da,l =%, (12)

which are noteworthy by their strong / dependences. These
! dependences illustrate the short-range nature of the polar-
izability on the mechanics of the classical atom. Interest-
ingly, to the level of approximation used here, these results

-are identical to those obtained by Freeman and Kleppner*

using a quantum mechanical formulation and the same lev-
el of approximation.

In this classical view of the atom the electron executes a
very nearly Keplerian ellipse that is slightly distorted near
the core, primarily by dipole polarization of the core. This
distortion causes the axis of the ellipse to shift, leading to
precession of the orbit about the force center. Under these
conditions the Keplerian orbit may itself be treated as a
dynamical entity. This is illustrated in Fig. 1 where the
trajectory shown was computed using an attractive 1/7*
term added to the 1/7 potential. Note that if the distortion
is caused by a repulsive force, then the precession will be in
the opposite direction.

There is an obvious analogy between the precession of
the elliptical electronic orbits in Rydberg atoms and the
well-known advance of the perihelion of the orbit of the
planet Mercury.® In the gravitational case, however, polar-
ization cannot occur because repulsive forces evidently do
not exist. Nonetheless, the mathematics of the two prob-
lems is essentially the same, but general relativity requires
the addition of a small 1/7* term to the Newtonian gravita-
tional potential.” This perturbation causes a deviation from
the Keplerian energy that may be described in terms of a
“gravitational defect.” This defect and the resulting
precession of the perihelion of the orbit of Mercury are
discussed in more detail in the Appendix.

The rate of precession of the electronic orbit may be ob-
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Fig. 1. Precession of a nearly Keplerian elliptical orbit of the Rydberg
electron about a positively charged nucleus. The precession is produced
by adding a term — a,/2r* to the Coulomb potential with o, = 40 a.u.

tained in terms of the quantum defect. To do this we aver-
age the time dependence of the Lenz vector A as defined in
I, over a Keplerian period. We have

A=pxXL+pxXL—+ (13)
Now, for a central potential L = 0 and
f = [1/A]LXT. (14)

Further, p is the force which is given by V¥ (r) so that, fora
central potential of the form

Viry= —1l/r+V'(n), (15)
we have

A=L A 1y v (16)

r dr ’

Now, assuming that the precession is caused by a potential
of the form V'(r) = — Br—7and that A is constant over a
single orbital period, we have

A = BgLX (¢/r+")

= Pg{cos ¢/r* '), [LXA/|A]], (17)

where the subscript on the average indicates that this is a
time average over one Keplerian “period.” This time aver-
age is most easily computed by converting to an average
over ¢ with the help of Kepler’s second law, ¢ = /, lead-
ing to

(28] - (22,

We also make use of the fact that

[eesg] 4[]

r! gdelr (18)

and interchange the order of differentiation and integra-
tion. If we assume that the dipole term in Eq. (3) causes the
precession, then 8 = a,/2 and ¢ = 4, leading to

-7
(52) - e )

Again ignoring terms in / /n higher than first order we ar-
rive at

(19)
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A = (15/4)(a,/1"n?)[LXA], (20)

which shows that the frequency of precession of the orbit
about L is given by

15 a4 5

CTH T Wl
in units of radians per atomic unit of time. We note that this
treatment is equivalent to the use of classical perturbation
theory,® and that the same result is obtained using that
formalism.

Equation (21) shows explicitly the relationship between
the quantum defect and the precessional frequency, either
of which may be regarded as a consequence of the other. It
also shows that the precession rate increases with decreas-
ing / because the effect of the short-range polarization po-
tential on elongated orbits will be greater than the effect on
nearly circular orbits. ’

The relationship between §, and w, can be clarified by
noting that each value of n characterizes a group, or mani-
fold, of states that differ in energy depending on their val-
ues of /, and consequently &,. According to Eq. (21) these
energy differences are associated with the precessional fre-
quencies characteristic of different angular momenta.
Thus, according to the correspondence principle, radiation
given off in a transition between adjacent / states will be of
the same frequency as the precessional frequency w, . Since
# =1 in atomic units, the radiation frequency w,,q4 is the
energy difference between successive / states as given by
Eq. (4). Assuming that the major contribution to §; is that
of the dipole term, as given by Eq. (11), the correspon-
dence principle leads to

5 (21)

0, =0

rad
=(1/m)[6,—6,,1] (22)

Treating / as a continuous variable and bearing in mind
that it is unitless in atomic units we have

= LB, 2 (23)

n dl oal

where w,; is the electronic orbital frequency. Applying Eq.
(23) to Eq. (11) we see that, indeed, the precession fre-
quency given by Eq. (21) is recovered. Note that it is the
rate of change of the quantum defect with angular momen-
tum that governs the precession rate and not the actual
value of §,.

IV. MULTIELECTRON ATOMS IN AN ELECTRIC
FIELD

Using the classical picture of Rydberg atoms, together
with the view of the hydrogen atom presented in I, we may
now examine the classical picture of a Rydberg atom sub-
jected to an electric field F. As discussed in I, application of
an electric field causes the elliptical orbit of a hydrogen
atom to precess about the field vector. For a Rydberg atom
this effect will also occur, as will the precession due to the
presence of the ionic core.

Consider first the case in which the electric field is so
weak that o, is much greater than the frequency of preces-
sion caused by the electric field; both frequencies are as-
sumed to be much lower than @, = 1/n?, so that, as usual,
the orbit is treated as a dynamical entity. Quantum me-
chanically this corresponds to Stark shifts in energy that
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are smaller than the energy separation between adjacent /
states of the same n manifold. Classically, the charge distri-
bution resulting from precession of the orbit about the nu-
cleus will be very nearly symmetric (see Fig. 1). There will
then be essentially no energy shift proportional to the first
power of F, as there is in hydrogen, because d, the time-
averaged permanent electric dipole moment, is zero. The
field can, however, induce the atom to have a dipole mo-
ment by polarizing it. This polarization is not the same as
that discussed in Sec. III of this paper; in the present case
the entire atom, including the Rydberg electron, is being
polarized by the electric field. This induced dipole moment
is given by aF, where a is the polarizability of the atom,>
not to be confused with @, and a,, the dipole and quadru-
pole polarizabilities of the core.

Although there is no first-order shift in the energy for
these weak fields, the induced dipole moment contributes
an energy

EStark = - (%)GF'F= - (%)alFlzy (24)
thus producing a quadratic Stark effect. We therefore see
the contrast between the weak field Stark effect in hydro-
gen and in Rydberg atoms; it is linear in hydrogen and
quadratic in Rydberg atoms.

As discussed in I, the first-order Stark effect in hydrogen
is caused by the permanent electric dipole moment of the
excited states. Classically, the existence of this permanent
electric dipole moment is a consequence of the asymmetric
charge distribution that results from variation of the orbi-
tal electronic speed, as dictated by Kepler’s second law.
Quantum mechanically, states with permanent electric di-
pole moments may be constructed by taking an appropriate
linear combination of the degenerate angular momentum
eigenstates, or, alternatively, by separating the Schro-
dinger equation in parabolic coordinates.®!! Classically,
the absence of a first-order Stark effect in multielectron
atoms is the result of symmetrization of the charge distri-
bution by precession of the Keplerian ellipse. Quantum
mechanically, the first-order effect vanishes because the
accidental degeneracy of the hydrogen atom is broken by
the presence of the core. Since the non-Coulombic poten-
tial of the core is a central potential, the Schrédinger equa-
tion can still be separated in spherical coordinates, but no
longer in parabolic coordinates. Thus the nondegenerate
angular momentum eigenfunctions, the squares of which
are symmetric through the force center, cannot have a per-
manent electric dipole moment. More importantly, since
they are nondegenerate, an eigenfunction of the same ener-
gy that has an asymmetric charge distribution cannot be
constructed. At the heart of the difference between the
Stark effects in hydrogen and in multielectron atoms is
therefore the broken symmetry of the Coulomb potential.

The classical view of the effect of a weak electric field on
the precessing Keplerian orbit provides a clear picture of
the nature of the quadratic Stark shift. It is often remarked
that the external field polarizes a charge distribution, thus
inducing a dipole moment & = aF. In such a picture the
charge distribution will always be polarized in the direction
of F so that the resulting Stark shift will be to lower energy
[see Eq. (24)]. This is, however, not always the case, as
may be illustrated by considering the Stark structure of
sodium atoms. Figure 2 is a generic diagram of high-lying
energy levels of sodium subjected to a weak electric field.
The two groups of states, each emanating from what ap-
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Fig. 2. Generic diagram of the high-lying levels of sodium in a weak elec-
tric field. The groups of states labeled n and (n — 1) represent the levels of
the “hydrogenic manifold” of states, that is, states for which the quantum
defect is so small that the difference in energy between them cannot be
seen on this scale; for sodium the hydrogenic manifolds comprise states
for which />2. The locations of the s and p states, which have quantum
defects of 1.35 and 0.85, respectively, are always located as shown with
respect to the difference between hydrogenic manifolds, 1/r* in atomic
units.

pears to be a single energy, represent the nearly hydrogenic
sets of levels having />2, and usually referred to as the
hydrogenic manifold. Although the electric field is “weak”
insofar as it Stark shifts the isolated p state, it is strong
enough to cause states having />2 to exhibit linear shifts in
energy on the scale of Fig. 2, thus the designation *“hydro-
genic” manifold. Although the zero-field levels of each
manifold appear to be degenerate on the diagram, a result
of their small quantum defects, they are not of course truly
degenerate as are the levels of pure Coulomb potential. The
relatively isolated (# + 1)p state undergoes a quadratic
Stark shift as shown. Because the quantum defect does not
vary appreciably with #, the zero-field location of the p-
state energy between adjacent hydrogenic manifolds will
always be the same. According to Table I, §, = 0.85 plac-
ing it 0.85 of the hydrogenic energy difference, 1/n?, below
the upper manifold [see Eq. (4)].

As the field is turned on, the energy of the p-state in-
creases quadratically. Quantum mechanically this is ex-
pected because the p-state is “repelled” by the nearest state,
in the case of sodium the highest of the hydrogenic states of
the lower manifold of the proper symmetry. The increase in
energy of the p state is, however, difficult to reconcile by
envisioning polarization of a charge distribution. Such an
increase corresponds to a negative polarizability!

The situation can be clarified by considering the effect of
the field on the precessing elliptical orbit as shown Fig.
3(a). As is apparent by counting apsides on each side of a
line through the force center and perpendicular to F, the
precession rate is slower on the “downfield” side causing a

Hezel et al. 332



Fig. 3. Precession of a nearly Keplerian elliptical orbit of the Rydberg
electron about a positively charged nucleus in an electric field F = 1000
V/cm. The precession is produced by adding a term — /27" to the
Coulomb potential. The principal quantum number # is 10. The orbital
angular momentum quantum number / would be 5 in the absence of F, but
due to the presence of the field angular momentum is not conserved. The
magnetic quantum number m, was chosen to be zero for convenience; this
choice makes the angular momentum vector perpendicular to F. (a) a,
= +40a.u. (b) g, = —40a.u.

buildup of negative charge on that side, as expected. Recall
that it is the negatively charged electron that is executing
the near Keplerian motion about the positively charged
nucleus. As discussed above, such a situation results in a
negative energy shift and corresponds to the case in which
the isolated (zero-field) state is closer to the hydrogenic
manifold above than below.

If, however, the state is closer to the manifold below, as is
the case for p-states of sodium, then the rate of change of
the quantum defect with angular momentum is positive
rather than negative, causing the orbit to precess in the
opposite direction [see Eq. (23) ]. Note that we may ignore
the integer part of §,, the only effect of which is on the
ordering of the states with respect to n. The positive rate of
change resulting from the proximity to the lower manifold
causes the Keplerian orbit to precess in the “wrong direc-

tion,” leading to a negative charge buildup “upfield,” and
thus a negative polarizability. This is shown in Fig. 3(b),
where, although the field F is in the same direction as that
for Fig. 3(a), the charge distribution is polarized opposite
to the direction of the field. We must of course restrict our
conception of angular advance or retreat of the apside to
values between 0 and 7 per Keplerian orbit.

The above discussion ignores the cause of any negative
polarizability. All that is required is that the isolated level
be closer to the lower manifold than the upper. In fact, in
sodium, for which 6§, = 1.35, the s states are displaced
further than the p states, but, because the fractional part of
the quantum defect is less than one-half, s states are closer
to the hydrogenic manifold above and their quadratic Stark
shifts are down. Nonetheless, from a classical point of view,
it is much more revealing to consider the direction and
rates of precession of the Keplerian orbit than the effect of a
field on a distribution of charge.

At higher values of electric field the precession rate
about F will overtake the core precession; again both are
assumed small compared to the electronic orbital frequen-
cy. In this case the atom will behave in a hydrogenic fash-
ion for individual electronic orbits, each of which will pre-
cess about F without substantial change in shape. It is
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therefore expected that, at sufficiently high electric fields,
Rydberg atoms will exhibit a linear Stark effect. Indeed,
this is observed, but, because the electric dipole moment of
an electron in Keplerian orbit about a proton is proportion-
al to n” (see I), these “high” electric fields are not high at
all by ordinary laboratory standards. Thus the quadratic
Stark effect on the states that constitute the hydrogenic
manifold of a Rydberg atom is usually not evident on a map
such as the one depicted in Fig. 2. This might lead to the
assumption that those zero field states for which /> (n/2)
have negative polarizability since their energies increase as
the electric field increases. This is not the case, however,
because the increase results from the /inear Stark effect on
states for which the permanent electric dipole moments are
aligned in opposition to the electric field. Indeed, if the
region near F = 0 of a Stark map for a Rydberg atom were
magnified to a degree that makes the nondegenerate nature
of the zero-field states evident, thus permitting observation
of the quadratic Stark effect, it would be seen that as F
increases, these energies first decrease quadratically, but
subsequently increase linearly. This is clearly illustrated in
Fig. 1 of Ref. 4 that shows the low field region for the
n = 10 hydrogenic manifold of sodium. In terms of the
discussion in this paper, the initial decrease is a result of the
regular nature of the quantum defects for high /states, that
is, the fractional part of these quantum defects are all less
than one-half and, moreover, they decrease with increasing
/. From a quantum mechanical viewpoint, the initial de-
crease in energy of a given state results from repulsion by
the level above inasmuch as the state in question is closer to
the above level than the one below it.

In early experiments the difficulty associated with main-
taining high electric fields without breakdown made Stark
effect experiments difficult to perform. With the availabil-
ity of lasers, however, it has become possible to produce
substantial concentrations of atoms in specific high-lying
states; accordingly, the study of the Stark effect in atoms
has undergone a rebirth.'>""* In fact, precision Stark spec-
troscopy on very high-lying states, in conjunction with
quantum defect theory, has recently been employed to de-
termine atomic energies, including ionization potentials, to
new levels of accuracy.™

The approximate value of the field at which the linear
Stark effect manifests itself in Rydberg atoms can be esti-
mated by noting that the quantum mechanical analog of
the condition for “high” fields is that the Stark energy
shifts are larger than energy differences between adjacent
angular momentum states of the same » manifold. This has
already been calculated [Eq. (22)]. We therefore set ©
equal to the Stark energy

rad

Egon =d'F:(%)n2|F|E. (25)
Solving for |F| we obtain
IF| = D a, (1/n°1%) (1/€). (26)

Again, the result is identical to that of Freeman and
Kleppner* using their quantum mechanical treatment.

In addition to the results derived above, it is possible to
extract many other atomic properties using this classical
picture. For example, the atomic polarizability may be de-
rived by averaging the Keplerian dipole moment? over a
precessional period. In many cases the results are identical
with those of a quantum mechanical perturbation treat-
ment. Thus using visualization provided by a classical pic-
ture, together with the insight required for proper applica-
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tion of the correspondence principle, the mechanics of
multielectron atoms may be better understood.

APPENDIX: THE GRAVITATIONAL DEFECT OF
MERCURY

It has long been known that the perihelion of the Kepler-
ian orbit of the planet Mercury advances by 574" of arc per
century.® Of this 574", approximately 531" can be account-
ed for by Newtonian perturbations of Mercury’s orbit by
other planets. The remaining 43" has been shown to result
from relativistic corrections to the Newtonian force law
that can be represented by an additional attractive term,
proportional to 1/7, in the potential energy.'® Since this
term is small compared to the 1/7 term, we may consider
the motion of the orbit resulting from the 1/7° perturba-
tions. This perturbation also leads to a small deviation from
the Keplerian energy, a deviation that may be described in
terms of a “gravitational defect” by analogy with the quan-
tum defect. Since we have established that the defect and
the precession are only different manifestations of the same
perturbation, the formalism that was used in the atomic
case may be employed. The dependence of the gravitational
defect on angular momentum will differ from that of the
quantum defect because the perturbation has a different »
dependence, but the magnitude of the gravitational defect
may be computed.

To investigate the magnitude of the gravitational defect
¥ we abandon atomic units and write the potential energy
as

Viry= —K/r—H/Pr, (A1)

where K = GmM with m the mass of Mercury and M the
mass of the Sun; G'is the gravitational constant. Now, Mer-
cury occupies one of an infinity of allowed Keplerian or-
bits, the energies of which are given by

Ey = —K/2q, (A2)

where a is the semimajor axis of the elliptical orbit. Al-
though it is not necessary to do so, we maintain the analogy
with atomic systems by quantizing this gravitational sys-
tem as is occasionally done as an exercise in introductory
quantum mechanics. The quantization is easily effected by
replacing @ with n’a,, (since we already know the answer
for a 1/r potential) where a,, is the analog of the Bohr
radius and is given by

a,, = #/mK, (A3)

where, as above, m is the mass of Mercury and #is Planck’s
constant divided by 2. In reality, m should be replaced by
the Mercury—Sun reduced mass. Of course a,, is a tiny
number, as it must be when the laws of quantum mechanics
are applied to a macroscopic system. Nevertheless, we will
temporarily retain it.

To account for the correction to the Keplerian energy
resulting from the 1/7° term in the potential energy, we
introduce the gravitational defect ¥. The true energy E is
thus given by

E=—K/2a,(n—7y)

=EKo/n2(1 -“'}’/n)z, (A4)

where E,, is the “ground state” energy of Mercury which,
because Mercury is bound, is negative. If y<n we may
write
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E=Ey,/n* + (2Ex,/n%)y,

which is analogous to Eq. (4).

Now the second term in Eq. (AS) clearly represents the
correction to the Keplerian energy and may be equated to
the value of the 1/7° perturbing term (AE ), averaged over
a Keplerian period 7. We have

anr-L{(-2)a

Using Keplers second law and the equation of the Kepler-
ian orbit, this integral, which is easily evaluated, is

(AS5)

(A6)

(AE) = —2mm’HK /I*r, (A7)
from which it follows that
y=+K/a,m [m*H /I’]. (A8)

Now, we are really interested in the value of (1 — y/n),
the correction factor to the Keplerian energy. We may
therefore rescale, for convenience, the principal quantum
number with n = 1 now corresponding to the energy of
Mercury in the orbit that it occupies. This rescaling merely
requires replacing a,, by a,, =58x 10° m, the semimajor
axis of Mercury’s orbit. Letting / = mv,,a,,, where v,, is
the orbital velocity of Mercury, we find y = 2.5 X 10 %, As
expected, a defect for such a nearly circular orbit is very
small, but, judging from the 19th century observations of
the advance of Mercury’s perihelion, clearly not negligible.

Finally, we may formulate, by analogy with the corre-
spondence principle derivation leading to Eq. (23), an
expression for the precessional frequency of Mercury’s or-
bit, w,. Equating the energy difference between adjacent /
states for a given 7 to #iw,, we have

2E,,
ﬁa)p =‘—n§—[?’1+1 - 7]

2E
— Ko I Al
n® 4l
Since Al="#, we arrive at

(A9)

_ 6mm’HK

ot
where Kepler’s third law was used to convert a,, into 7.
This result is identical to that derived using classical per-

turbation theory.® Evaluation of this expression with
[ = mv,a,, shows that, as expected, w, = 43"/ century.

) (A10)
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Floating equilibrium of symmetrical objects and the breaking of symmetry.

Part 1: Prisms
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The equilibrium configurations of solid prisms of square and equilateral triangular cross section
floating in a liquid are examined. It is found that these bodies float in different symmetrical or
asymmetrical positions with respect to the vertical plane depending on the solid-liquid specific
mass ratio, or depending on the height at which the body’s axis is held above the liquid level.

L INTRODUCTION AND HISTORY

' During a lunch-table conversation, Professor Brian Pip-
pard told one of us about his experience with students who
were given the following problem: A solid and homoge-
neous prism of square cross section and great length com-
pared to its diagonal is floated on a liquid. The longitudinal
axis of the prism is not allowed to deviate from the horizon-
tal position, but the prism may turn freely around this axis.

The question that was asked the students was the follow-
ing: Given the specific mass of the liquid and the specific
mass of the solid, in which position will the prism float? As
Professor Pippard indicated, this problem, although ele-
mentary, taxed many students beyond their capacity.

In fact, this problem has a distinguished history.

The subject of the flotation of homogeneous solid bodies
in liquids has been treated by Chr. Huygens in 1650 (see
Fig. 1):' He was 21 years old at the time. He revised the
paper “De iis quae liquido supernatant” several times later
in his life. His only quoted reference on this subject is Ar-
chimedes.? It seems that Huygens was the first person who
treated the flotation of a long prism of rectangular cross
section and he discovered that in certain ranges of the ratio
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of the specific masses of the solid and liquid, this symmetri-
cal object will float in an asymmetrical stable equilibrium
position. This discovery was not entirely new, since Archi-
medes already noted that a truncated paraboloid of revolu-
tion (a symmetrical body) may float in an equilibrium po-
sition unrelated to its symmetry.?>

It is not known why Archimedes chose to study the flota-
tion of a truncated paraboloid of revolution. A reason may
have been that, previously, he had proved many proposi-
tions concerning the geometry of parabolas. Also, he may
have observed watermelon halves floating in the bay of
Syracuse, Sicily, where he lived. The mathematical formal-
ism of his time did not allow him to express the angle of
flotation in a formula (e.g., no trigonometric functions
were known ); instead, he described how to construct a tri-
angle geometrically with one angle identical to the angle of
flotation, given the ratio of the densities of the solid and of
the liquid.

Huygens did not arrive at a complete solution of the
problem of long prisms, insofar as he probably did not rec-
ognize the existence of a stable equilibrium position in
which either one or three edges of the prism are below the
liquid surface, although he treated the case where two
edges are submerged. The former positions are only stable
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