Since the only current that flows is in the \(\hat{\phi} \) direction this is like a finite solenoid. From the direction of \(\vec{K}_b \) the \(B \)-field must be in the \(z \)-direction inside the magnet. \(B \) will have an \(s \)-component because the solenoid is finite in length.

We have

Now, how about \(\vec{H} \)?
\[
\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}.
\]

We must determine the direction of \(\vec{H} \) by examining the relative magnitudes of \(\frac{1}{\mu_0} \vec{B} \) and \(\vec{M} \) because of the minus sign. Outside \(\vec{H} = \frac{1}{\mu_0} \vec{B} \) because \(\vec{M} = 0 \) so it is in the same direction as \(\vec{B} \)

Inside \(\vec{B} < \vec{B}_{\text{inside, solenoid}} = \mu_0 n I \) because \(B \)-lines emerge from the ends. In other words the \(B \)-line density is lower in the finite solenoid than in an infinite solenoid.
Let's temporarily assume $B = \mu_0 nI$ where $nI \rightarrow k_b = M$ for this permanent magnet. Then

$$H_{inside} = \frac{1}{\mu_0} (\mu_0 M) - M = 0$$

Because $B_{inside} < \mu_0 M$, H_{inside} must be in the opposite direction of M and B_{inside}.

\[H \text{-field} \]

H is discontinuous at the end caps of the cylinder. It is as though there are sources of H which would mean that $\nabla \cdot H = 0$ and that there is fictitious magnetic charge on the end caps.

\[\nabla \cdot \vec{H} = \nabla \cdot \left(\frac{1}{\mu_0} \vec{B} - \vec{M} \right) \]

\[\nabla \cdot (\vec{H} + \vec{M}) = 0 \] which shows again that \vec{H} and \vec{M} are in opposite directions.