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ABSTRACT

We present high-resolution infrared spectra of V1647 Ori, the illuminating star of McNeil’s Nebula, which
reveal the presence of hot and cold gas-phase CO and ices of CO and H,0. The emission lines of '>CO (1-0), (2—1),
and (3—2) likely originate from ~2500 K gas in an inner accretion disk region, where substantial clearing of dust has
occurred. The width of the emission lines increases with increasing J-value, suggesting that the hottest CO gas we
detect is located closest to the central star. The narrower widths of the low-J CO emission lines are indicative of
more distant, cooler material in the inner disk. Superposed on the low-.J emission lines are narrow '2CO absorption
components, which are typical of cold interstellar cloud material at a temperature of ~18 K. The very low column
density and very cold temperature for the absorbing gas suggest that we are viewing the central star through
intervening material within the L1630 cloud and that the disk is oriented nearly face-on. The Doppler shift of the
cold CO is offset from the hot gas by 6 + 2 km s~!, so it is likely that the very cold CO originates in a foreground
cloud rather than the circumstellar material surrounding V1647 Ori. Model fits to the strong H,O and CO ice ab-
sorption bands are consistent with cold (<20 K) amorphous water ice (7 = 0.65) and predominantly apolar CO ice

(7 = 0.58). The CO and H,O ices are unprocessed (unannealed), similar to the ices in dense clouds.
Subject headings: infrared: ISM — ISM: individual (McNeil’s Nebula) — reflection nebulae

1. INTRODUCTION

The near-infrared source V1647 Ori (2MASS J054613—
000606), located in the Lynds 1630 cloud in Orion, was
reported to have brightened enormously at visible wavelengths
and to have revealed a cometary-shaped reflection nebula,
which has been named after its discoverer Jay McNeil (McNeil
et al. 2004). This rare event has sparked a flurry of observations
spanning X-ray through radio wavelengths (Abraham et al.
2004; Andrews et al. 2004; Bricefio et al. 2004; Kastner et al.
2004; Reipurth & Aspin 2004; Vacca et al. 2004). V1647 Ori
appears to have brightened by as much as 5 mag in the / band
over the course of about four months in late 2003 and early 2004
(Briceiio et al. 2004). Subsequently, it was found to have gone
through a similar brightening as recently as 1966 (Mallas &
Kreimer 1978). Reipurth & Aspin (2004) show that the J, H,
and K’ bands have brightened by ~3 mag. Early reports sug-
gested that the apparent brightening may have resulted from a
rapid collapse of circumstellar disk material that fell onto the
central star, similar in some ways to an FU Orionis or EX Lupi
event (Bricefio et al. 2004; Reipurth & Aspin 2004; Calvet et al.
1993). This proposed accretion event was not observed directly,
and all observations subsequent to the brightening of V1647
Ori point to outflowing rather than inflowing material (e.g., Vacca
et al. 2004).

The position of V1647 Ori coincides with that of an IRAS
source (05436—0007) and a 1.3 mm source (LMZ 12), which
Lisetal. (1999) suggested might be a Class 0 or somewhat more

! Current address: National Optical Astronomy Observatory, 950 North
Cherry Avenue, Tucson, AZ 85719.
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advanced protostar with an unresolved accretion disk. They
further speculated that the faint /-band and near-infrared source
now known as V1647 Ori had already dispersed the molecular
gas in its immediate vicinity. Emission lines in optical as well
as infrared spectra taken after the outburst of V1647 Ori have
shown evidence for P Cygni structure due to a high-velocity
wind (Reipurth & Aspin 2004; Vacca et al. 2004). The images
of Reipurth & Aspin (2004) and the spectroscopy of Vacca et al.
(2004), however, showed no evidence for shocked gas in H,
(2.122 pm), which would be consistent with the absence of am-
bient cloud material in the close vicinity of V1647 Ori. Abraham
et al. (2004), Andrews et al. (2004), and Vacca et al. (2004) sug-
gested that V1647 Ori may be a Class I/Class 11 transitional object.
From the spectral energy distribution, Abrahdm et al. (2004) de-
rived a circumstellar mass of ~0.5 M., while Andrews et al.
(2004) estimated the circumstellar mass to be an order of mag-
nitude lower at ~0.05 M.,

In this work, we present high-resolution infrared spectra
of V1647 Ori, which reveal hot and cold gas-phase CO, and
moderate-resolution spectra of ices of CO and H,O. The anal-
ysis of the gas-phase CO lines is presented in § 3, and results for
the ice analysis are presented in § 4. Section 5 presents a dis-
cussion of the results.

2. OBSERVATIONS

High-dispersion infrared observations (2—5 pum) of V1647
Ori were made on 2004 February 28 UT at the W. M. Keck
Observatory on Mauna Kea, Hawaii, using the NIRSPEC spec-
trometer. Table 1 provides a list of the wavelengths observed.
NIRSPEC provides a resolving power (RP) 0f 25,000 (McLean
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TABLE 1
NIRSPEC SETTINGS

Spectral Coverage

RETTIG ET AL.
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et al. 1998), which allows us to cleanly separate the fundamental
(1-0) and excited (2—1) and (3-2) states of '>)CO and '*CO as
well as measure the CO ice feature. In the spectra, many CO ro-
tational lines are detected in emission, and a few of them at low

Setting Order (em™) J-values are seen in absorption as well. The broad solid-state water
M-wide 1 (61.12, 37.05) vooooccrrrrerrreesree 14 18851855 and CO ice features within the wavelength range covered by our
15 2019-1987 spectra are more readily analyzed from medium-resolution data.
16 2153-2118 Vacca et al. (2004) have generously provided their SpeX observa-

M-wide 2 (664, 37.27)"cccoovvvvvvvvvviininnnnnnns 14 1857-1829 tion for our analysis of the ice, which is discussed in § 4.
15 19891960 For each grating setting a series of flats and darks was taken to
_ . 16 2120-2090 remove systematic effects. The images were cleaned of hot and
M-wide 3 (6428, 36.70) v ig é gg? ; 32 ; dead pixels as well as cosmic-ray hits and were then resampled
17 991 :21 o1 spectrally and spatially so that the resulting images placed spectral

? Echelle and cross disperser settings; the integration times for the three
settings were 12, 16, and 12 minutes, respectively.

and spatial dimensions orthogonally, falling along rows and col-
umns, respectively. Details of our reduction and analysis tech-
niques can be found in Brittain et al. (2003, 2004). The observations
began with the NIRSPEC entrance slit in a position angle of 15°
and finished with a position angle of 45°. Flux calibration for
the emission lines was achieved using the calibrated SpeX data
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Fic. 1.—Sample spectra showing CO emission features for '2CO (1-0), (2—1), and (3—2) and '3CO. In the top panel the broad absorption feature at 2140 cm ™! is due
to CO ice. The 12CO emission lines have narrow absorption components superposed on the low-J lines only out to P(4). The higher transitions of CO are detected to
about P(44); none of the high-J lines show signs of CO absorption. The atomic hydrogen line Pf3 was not detected at 2149 cm™' (e.g., Simon et al. 2004). Our
observations do not cover the Bra: at 4.05 pm or the Bry line at 2.17 pm.
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TABLE 2
FunpaMentaL 2CO (1, 0), '2CO (2, 1), anp 3CO (1, 0) EmissioN LINE PARAMETERS

Vlab Vobs Av Vrad FWHM Flux
Line ID (em™h (cm™1) (cm™1) (km s7h (km s~ (10777 W m2)
Fundamental '2CO (1, 0)
2218.75 2218.34 0.41 55 2442 9.68 +1.18
2215.70 2215.29 0.41 56 24£2 9.43 £0.72
2209.51 2209.11 0.40 54 23+2 7.03 +£0.63
2206.35 2205.98 0.37 51 23+2 8.44+0.68
2199.93 2199.54 0.39 53 2142 7.79 £ 0.66
2196.66 2196.27 0.40 55 23£2 9.14+0.71
2193.36 2192.96 0.40 57 20+2 7.35+0.64
2119.68 2119.29 0.40 56 25+2 7.54 +£0.68
2115.63 2115.26 0.36 52 14+2 7.16 £0.76
2111.54 2111.16 0.38 54 22+2 8.14 £ 0.70
2107.42 2107.01 0.41 59 2242 7.94 +0.69
2103.27 2102.89 0.38 55 22+2 6.54 +0.63
2099.08 2098.71 0.37 53 25+2 8.85+0.73
2094.86 2094.49 0.38 54 20£2 7.21 £0.67
2086.32 2085.95 0.37 53 1942 6.91+2.13
2082.00 2081.65 0.36 51 21+2 8.52+2.37
2073.26 2072.89 0.38 54 26+2 8.08 + 1.05
2068.85 2068.49 0.36 52 20£2 754+ 1.16
2064.40 2064.04 0.36 52 23+2 7.80 + 1.09
2018.15 2017.78 0.37 55 28+2 7.48 +£0.98
2013.35 2013.00 0.35 53 3242 6.43 +0.89
2008.53 2008.13 0.40 59 37+£2 7.79 £ 1.00
2003.67 2003.31 0.36 54 3542 5.92+0.89
1998.78 1998.39 0.39 59 36+6 5274+0.87
1983.94 1983.57 0.37 55 3443 4.61£0.36
1978.93 1978.56 0.36 55 363 4.49+£0.74
1973.89 1973.53 0.37 56 33+3 4.07 £0.50
1958.60 1958.25 0.35 53 39+9 3.77+0.96
1953.45 1953.10 0.35 53 36+9 3.33+£0.33
1937.81 1937.47 0.35 54 39+9 3.01 £0.31
2co @, 1)
2089.39 2088.9 0.49 71 59+17 524+ 1.58
2085.34 2084.98 0.36 52 52+7 3.60+£0.62
2016.03 2015.70 0.33 49 50+2 448 £1.42
2011.42 2011.01 0.41 61 47+£3 3.27+0.25
2006.78 2006.45 0.33 49 47+3 298 +£0.24
2002.12 2001.77 0.35 52 56+3 3.524+0.24
1997.42 1997.03 0.39 58 56+3 3.66 +0.26
1983.13 1982.72 0.41 62 56+6 3.77+0.43
1978.31 1978.04 0.27 41 45+ 10 422+1.19
1973.46 1973.09 0.37 56 49+5 3.65+0.37
3o (1, 0)
2150.34 2149.95 0.39 54 2243 0.96 +0.15
2144.03 2143.66 0.37 52 24£2 1.18+£0.14
2140.83 2140.43 0.40 55 15+2 0.96 +0.15
2134.31 2133.93 0.38 54 18+2 1.59+0.17
2131.00 2130.62 0.39 54 1741 1.36 £0.10
2124.29 2123.91 0.38 53 17+4 1.86 +£0.47
2069.66 2069.30 0.35 51 14+2 1.80 +0.26

(Vacca et al. 2004). The emission lines, which span the funda-
mental vibrational band fromJ’ = 0 to 44, are spectrally resolved
at the 12 km s~! resolution of NIRSPEC and appear symmetric in
shape; they are not observed to be spatially extended along the slit.

Figure 1 presents two spectral extracts for the high-resolution
infrared data from our 3—5 pm observations. The high-resolution
M-band spectra of V1647 Ori reveal '2CO gas in emission and ab-
sorption, emission lines from higher vibrational bands of '>CO, and

247

emission lines from 13CO. The observed line positions, geocentric
velocities, and the FWHM for each line are provided in Table 2.

3. GAS TOWARD V1647 ORI

3.1. CO Emission

The excitation plot for the CO emission lines, (k/AcB) In {F;/
(74 +J" 4+ 1)]} versus J'(J' + 1), is presented in Figure 2,



248 RETTIG ET AL.

T T T T T T T T T T T T T T T T
T=480=70 K ]
v=1-0 12CO (Low-J component)
255+ g —
X ]
RN T=2530 £ 50 K 1
kY v=1-0 12CO
= 260~ “ é *%\ (High-J component)
o0 5 " 1
h j \Q\\"-Q Ke 1
g { 44 it 4 %
= L T~
& 3 T=2400 + 300 K %
s T # v=2-112C0 1
65l Y .
~ 3
a L #\ -
2 ¢
g L T=410+x40 K 4
v=1-0 13CO |
27.0 —
| I8 T=240+ 80 K |
I [t v=1-012CO ("Cool" component) 1
275+ —
1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1
0 500 1000 1500 2000

JJ'+1)

Fic. 2.—Rotational diagram of the CO emission lines for '2CO (1-0) (hot and
cold gas), '2CO (2—-1), and 1*CO (1-0). At the bottom of the figure, a corrected plot
for the cooler 2CO (1-0) gas is presented. A plot of (k/hcB) In{F//[*(J' +
J" +1)]} vs.J'(J' + 1) reveals a straight line for optically thin LTE gas, such that
the negative reciprocal of the slope is the rotational temperature of the gas. The fit to
the 2CO (1-0) and (v = 2—1) high-/ lines is linear and provides rotational tem-
peratures of 2530 =+ 50 and 2400 =+ 300 K, respectively. The '3CO (1-0) provides
a rotational temperature of 410 + 40 K. The linear fit to the low-J '2CO (1-0)
lines, with the flux contribution from the high-/ lines removed, is presented at the
bottom. These lines show the largest uncertainty after the warm CO component is
subtracted.

where the rotational temperature of the gas is given by the
negative reciprocal of the slope. The excitation plot of the '2CO
(1, 0) transitions is not linear, which implies that either the gas is
optically thick and/or the emission lines arise from gas hav-
ing a range of temperatures (e.g., Brittain et al. 2003; Najita
et al. 2003; Gonzalez-Alfonso et al. 2002). In general, it is
difficult to distinguish between these alternatives. However, we
can exploit kinematic information to guide our analysis.

In particular, as shown in Figure 3, the width of the '>CO
fundamental emission lines is seen to increase with the upper-
state energy level, E’, which is proportional to J/(J/ + 1). If we
assume that the line width is determined by Keplerian motion,
the lower J lines (J' < 25), which are less broadened, must be
formed farther from the star and consequently are dominated by
cooler gas. The higher Jlines are broader (have a larger Doppler
width) and therefore must be dominated by material that is
closer to the star.

The apparent trend in the CO line widths is consistent with
the rotational temperatures we infer from the slopes of the re-
gression lines shown in the excitation plots of Figure 2. The
detection of the very high J lines indicates that some of the '2CO
gas we observe is remarkably hot. The rotational temperature
in 12CO (1, 0) determined from the slope of the fit to the J =
12—44 lines is 2530 £ 50 K. Similarly, the rotational tempera-
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Fig. 3.—Width of the CO emission lines as a function of CO energy level.
The open squares denote >CO (1, 0). The diamonds indicate '*CO transitions,
which are only detected for the low-J lines. The asterisks represent '>CO (2, 1)
lines, which are only detected for the high-J lines and probably originate nearest
the star. The line widths increase with energy (and thus J-value), suggesting that
the hotter material observed in the higher J lines is rotating faster, nearer the
central star.

ture of the v =2-1 lines (J = 23-32) is consistent with a
value of 2400 + 300 K. By comparison, the v = 2—1 lines in
the CO spectrum of HL Tau yield a rotational temperature of
1500 K (Brittain et al. 2005), the emission from TW Hya gives
~400 K (Rettig et al. 2004b), and that of HD 141569 yields
only ~200 K (Brittain et al. 2003). However, the high CO tem-
perature for V1647 Ori that we derive here is not too surprising,
given the detection of the Av =2 CO band heads at ~2.3 ym
(Vacca et al. 2004), which require temperatures of at least
2000 K to be populated. The CO band head emission indicates
the presence of hot, dense gas near the star. At this temperature,
the lines are formed by collisional excitation with H and H,,
because neither UV nor IR pumping is capable of producing
the observed rotational temperature distribution; essentially, the
high-J transitions of '>CO gas cannot be populated by photon
pumping (Carr 1989; Scoville et al. 1980). Since dust sub-
limes at ~1500 K, it is clear that a substantial fraction of the hot
CO emission originates in a portion of the inner disk that must
be relatively free of dust.

On the other hand, the trend line for the '2CO (1, 0) gas at low
J-values [R(1) through P(4)] suggests a cooler temperature of
~480 K; however, to determine the true rotational temperature
of'this ““cool” component we must first remove the contribution
from the hot gas to the flux of these low-J lines. The emission
contributed by the hot gas to the flux of low-J lines was calculated
by extrapolating from the high-J lines, which are obviously un-
contaminated by the low-temperature gas. The corrected excita-
tion plot of the low-J lines of 12CO, shown in the lower portion
of Figure 2, provides a temperature of 240 + 80 K. This revised
temperature is somewhat lower than our estimate of 410 £+ 40 K
for the 3CO gas (Fig. 2), although the two are still consistent
within the 3 o errors and thus indicate a common origin. The
considerably cooler temperature and relatively narrow line widths
suggest that the low-J lines of '2CO and '3CO originate from a
more distant, cooler gaseous disk component around V1647 Ori.

Since the emission lines are spectrally resolved, we can use
their line profiles to make an estimate of the radial distribution of
the gas (Najita et al. 2000, 2003). The velocity half-width at zero
intensity (HWZI) of the broad emission lines at high J-values
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TABLE 3
EquivaLENT WIDTHS, OPAcITY, AND COoLUMN DENSITY FOR THE CoLp CO Gas

Drest Dobs AD Vrad Equivalent Width Ny
Line ID (em™) (cm™1) (em™h) (km s7h (1072 cm™) T (10" cm=2)
2150.86 2150.51 —0.35 48 1.9+0.1 8 1.25+0.29
2147.08 2146.73 —0.35 48 1.9+0.1 8 0.84 +0.20
2139.43 2139.08 —0.35 49 1.6 £0.1 4 1.33+£0.25
2135.55 2135.21 —0.34 47 1.6 +0.1 4 1.12+0.21
2131.63 2131.30 —0.34 47 1.2+£0.1 2 0.52+£0.08
2127.68 2127.34 —0.34 48 0.85+0.1 1 0.28 +0.05
2123.70 2123.36 —0.34 48 0.25+0.1 0 0.06 +0.02

# The values for N;» result from b = 0.85.

corresponds to the radius of the gas at the inner edge of the warm
emitting region, and the velocity half-width at half-maximum
(HWHM) corresponds to half the radius of the upper limit on the
outer edge of the emitting region (Najita et al. 2003). To con-
struct an average line profile for the high-J lines, we used the
12CO high-J fundamental and » = 21 lines, as these lines are
minimally affected by telluric absorption. The HWZI of the av-
erage profile corresponds to vsini = 90 & 5 km s~!; thus, the
radius of the inner edge of the hot CO emitting region is Ripner =
0.11 My, sin® i AU.2 The HWHM of the average profile is 26 +
5 km s~!, which implies an outer radius of 2.6 M, sin?i AU
for the region. Similarly, for the relatively narrow low-J lines
of BCO, the HWZI = 25 and HWHM = 13 km s~ ! of the av-
erage profile imply 1.4My, sin® i AU for the inner radius and
11 M4 sin? i AU for the outer radius of the region that gives rise
to the cooler gas we observe. Although the rotational temperatures
are suggestive of two distinct populations of gas, the line profiles
indicate that there is a substantial degree of radial overlap.

3.2. CO Absorption

The low-J emission lines of '2CO (1-0) have absorption
features superimposed on them (Fig. 1). We have measured
equivalent widths of absorption-line profiles from the spectra in
two ways: first by summing the absorption area, and second via
Gaussian fits to the line profiles. Uncertainties were estimated
from the mean deviations from the Gaussian fits and by the
formal uncertainty in the fitted continuum level. The equivalent
width, column density, and optical depth of each line are pre-
sented in Table 3.

Since the R(1) line and the P(1) line do not yield similar
column densities, these lines are optically thick. To infer the
proper column density and rotational temperature of the gas, we
perform a curve-of-growth analysis on the absorption lines
(Brittain et al. 2005; Kulesa 2002).

2 For material in a circular, Keplerian orbit R = 900M,/v?, where R is the
radius in AU, v is the velocity in km s~!, and My, is the mass of the star in solar
masses.

TABLE 4
PARAMETERS FOR DIFFERENT INTRINSIC DOPPLER WIDTHS

b Tmt Ntotal
(km s~ ") NR(1)/N(P(1)) (K) (10'° cm~2) X2
20+1.0 12340.8 154+3.5 1.56
14+0.6 14.84+0.9 70+1.2 1.21
1.0+04 17+1 45406 0.99
0.9+0.2 18+1 35404 1.01
0.8+0.2 20+1 3.0+03 1.22

The fact that the R(1) line and the P(1) line probe the same
lower state allows us to estimate the intrinsic Doppler width,
b = FWHM/1.665, of the absorption lines (Brittain et al. 2005).
For » = 0.7-1.0 km s~', the R-branch and P-branch column
densities are in agreement (Table 4); however, this is only one
set of lines with a substantial uncertainty. We further constrain b
by selecting the value that best linearizes an excitation diagram
for the absorption lines. By minimizing x 2, we find that 0.8 <
b < 0.9 km s~! (Table 4). Thus, the resulting total column den-
sity of cold 12CO is (4 £ 1) x 10'® cm~2, and the rotational tem-
perature is 18 + 1 K (Fig. 4). The observed Doppler shift of the
cold CO absorption lines is 48 4 1 km s~!, whereas the Doppler
shift of the hot emission lines is 54 4 2 km s~!. When corrected
for the Earth’s motion, the average heliocentric radial velocity
iS vag = 23 £ 1 km s~ for the absorption lines and 29 + 2 km
s~! for the CO emission lines. The relative velocity difference,
6 & 2 km s~!, implies that the cold gas is foreground material
rather than circumstellar.

In the next section we show that at this cold temperature, a
significant portion of the CO along the line of sight to V1647
Ori is bound up in ice.

4. H;O AND CO ICE TOWARD V1647 ORI

Vacca et al. (2004) obtained a medium-resolution (RP ~
2500) spectrum of V1647 Ori with the SpeX facility spectro-
graph at the NASA Infrared Telescope Facility (IRTF; 2004

ip Doy ady g

T=18+1K
N(CO) = 4+1x 10'6 cm-2

-

N
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log(N/(2J+1)
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Fic. 4—Rotational temperature diagram of the cold '2CO (1-0) absorption
component. The linear fit to the plot (using b = 0.85) indicates that the optical

depth effects have been corrected. The inverse slope of the plot is proportional to
the rotational temperature (18 £ 1 K).
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corresponding to the sum of the apolar and polar contributions. We fit to the SpeX data because the continuum was better defined. The ice absorption features indicate

that the underlying star is embedded in the Orion L1630 cloud.

February 27 UT) and have kindly provided the spectrum to us
for the analysis of the O—H and C=0O stretch modes of water
and CO ice at 3.05 and 4.67 um, respectively. The CO ice band
was also observed with NIRSPEC on the following night at
Keck (see Fig. 1). The H,O and CO ice bands are presented in
Figures 5a and 5b, respectively.

The optical depths of the ice features were determined by
fitting a polynomial to continuum points on either side of the ice
absorption. To analyze these features, we used laboratory data
from the Leiden Molecular Astrophysics group® and Hudgins
etal. (1993) and made a least 2 fit to the optical depth spectrum
of each ice feature simultaneously with two laboratory spectra.
In the case of H,O, a combination of both warm and cold ice
components was investigated for cases with and without scat-
tering. The scattering model used was based on the core-mantle
Mie scattering code developed by Bohren & Huffman (1983) and
is discussed in detail in Chiar et al. (2002). In this model, we as-
sume equal numbers of silicate and graphite grains with a size dis-
tribution n(a,.) da. < a_** da,., where a, is the core size, ranging
over 0.005 < a, < 0.25 pym. This model should be a reasonable
first approximation to the grain size distribution in dense clouds
(e.g., Smith et al. 1993; Whittet et al. 1996; Holbrook & Temi
1998). Our model also incorporates a mantle thickness distribu-
tion, as discussed by Smith et al. (1993) and Chiar et al. (2002).

Our best laboratory fit to the H,O ice band toward V1647 Ori
(see Fig. 5a) is for a scattering model using cold (~10 K) amor-
phous (unprocessed) ice on silicate and graphite grain cores hav-
ing a maximum mantle thickness of 0.35 um. A similar water ice
band is seen toward Elias 16, a K giant located behind the Taurus
dark cloud in a region believed to be devoid of star formation
(Smith et al. 1993; Gibb et al. 2004). The column density of H,O
ice was determined using N = [ 7dA/A, where 4 is the band
strength determined in the laboratory. For water, we use 4 =
20 x 1077 cm molecule ™! (d’Hendecourt & Allamandola 1986),
giving N(H,0) = (1.2 £ 0.1) x 10'8 cm

For the 4.67 um C = O stretch feature of CO ice, we simul-
taneously fit combinations of both apolar and polar CO as well

3 See http://www.strw.leidenuniv.nl/~lab.

as combinations of pure CO with polar and apolar mixes. The
best laboratory fits are shown in Figure 5b. The dot-dashed line
shows the polar ice contribution, the dashed line shows the
apolar ice contribution, and the bold line shows the total CO ice
laboratory fit. The profile is clearly dominated by cold (<20 K)
apolar CO mixtures in which CO is in an ice matrix with such
species as CO,, O,, and possibly a very small amount of water.
The band strength of CO was assumed to be 1.1 x 1077 cm
molecule™! (Gerakines et al. 1995), resulting in N(CO) =
(2.4 4 0.2) x 10'7 cm™2, of which up to 5% may be due to CO
in a polar (water-rich) mixture. Comparing this to water, we de-
termine N(CO)/N(H,0) = 0.20 £ 0.02. This high abundance
of CO is consistent with that seen toward quiescent dark clouds
and low-mass star formation regions (Gibb et al. 2004 and ref-
erences therein). Coupled with the low temperatures and profile
shapes, we conclude that the CO ice along the line of sight
toward V1647 Ori is predominately in an apolar matrix ice and
has not been thermally processed.

We also note the results of Andrews et al. (2004) for V1647
Ori, where they report no evidence for the 9.7 um silicate fea-
ture in either absorption or emission. While there are other
young stars without silicate features (see, e.g., Hanner et al.
1998; Kessler-Silacci et al. 2005), these objects also lack ice
absorption. Ices need a particle on which to condense, thought
to be primarily cold silicate dust grains. Near young stellar
objects, the silicate feature is often dominated by an emission
component (Bowey et al. 2003), and it is possible to have ice
absorption toward these objects as the ice is condensed on the
cold silicate grains along the line of sight between us and the hot
young star. To have a source with significant ice absorption and
no evidence of silicates is perplexing. Further study of the solid-
state component toward V1647 Ori and other young stars is
necessary to resolve this mystery.

5. DISCUSSION

The extinction toward V1647 Ori has been estimated to be
Ay = 8—14 mag (Bricefio et al. 2004; Abraham et al. 2004;
Andrews et al. 2004; Vacca et al. 2004). Given this extinction,
the column of intervening cold CO gas that we measure,
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N(CO) = (4 + 1) x 10'° cm™2, is too small to be explained with
abundances typical of dark clouds, where CO/H, = 1.5x 1074
(Kulesa 2002; Kulesa & Black 2003). The presence of signif-
icant CO ice in the M-band spectrum indicates that gas deple-
tion onto dust grains dominates; indeed, the abundance of solid
CO exceeds that of gas-phase CO by a factor of 6.

Models describing the photodissociation of CO and H, as
a function of depth into a cloud can be used to illustrate the
abundance gradients at the surface of clouds exposed to an ex-
ternal radiation field. For example, if the intervening material
has a density ny ~ 10* cm™3, is illuminated by a modest radi-
ation field (Iyy = 1—10),4 and is composed of “dark cloud”
dust grains, then a total CO column of ~3 x 10'7 cm™2 implies a
depth of N(H,) = 7.2x10* cm™2, N(H) = 3.3x10%° cm™2,
and Ay ~ 9 mag (Kulesa 2002; Brittain et al. 2005). These
results have only moderate sensitivity to cloud parameters; ap-
plication of “diffuse cloud” grains reduces 4 to 6, whereas an
increase in radiation field (/yy = 10°—10°%) requires more ex-
tinction (4y ~ 11) to shield the same column of CO. Standard
cloud models are therefore able to unify the observed extinction
toward V1647 Ori and the low abundance of CO.’

Does the CO absorption originate from material in a flared disk,
as may be typical of many young stars, or from an intervening
interstellar dust cloud? As an interesting comparison, V1647 Ori
has a column density of absorbing CO gas that is relatively small
(0.5%) compared to HL Tau (Brittain et al. 2005; Rettig et al.
2004a). Both objects are similar Class I/Class II transitional stars
with about the same circumstellar mass ~0.05 M, (see Sargent &
Beckwith 1991 [much larger]; Lay et al. 1994; Mundy et al. 1996;
Wilner et al. 1996; Abraham et al. 2004; Andrews et al. 2004).
HL Tau has an inclination ~67° (Lucas et al. 2004) and an 4y ~
24 (Close et al. 1997). Its high gas-phase CO column density
N(CO) = 7.5 x 10'® and temperature (~100 K) indicate an origin
in the flared disk (Brittain et al. 2005). For V1647 Ori, the much
lower extinction and much smaller N(CO) suggest that we are
viewing a very nearly face-on disk. Furthermore, the Doppler shift
of the cold CO is offset from the hot gas by 6 & 2 km s~! (see
Tables 2 and 3), so it is likely that the very cold CO (18 K) orig-
inates in a foreground cloud rather than the circumstellar material
surrounding V1647 Ori.

The absorption-line results imply that we are looking through
a cold dense cloud in front of a young protostar, and the low
column density of CO in absorption from the disk implies an
inclination <30°. This orientation is in agreement with Andrews
et al. (2004), who use a nearly face-on disk to explain the non-
detection of the silicate feature. They suggest that the effects of
emission from the disk and absorption from intervening cloud
material cancel. However, if we were looking through even part
of a massive (0.05 M,,) flared disk, the N(CO), extinction, and
CO absorption temperature would be much higher than observed,
and the ice would be annealed.

The high- and low-.J emission lines of '>CO and '*CO sug-
gest that the CO gas around V1647 Ori consists of a very hot
(~2500 K) component near the central star and a more distant,
cooler disk component, which is only a few hundred K. For il-
lustration, if we assume an inclination of 30° and a stellar mass
of 1 Mg, the hot CO emission would have an inner radius of
~0.03 AU and extend to ~0.7 AU (see § 3). The inner radius is

4 Note that Iyy = 1 corresponds to an integrated intensity of 912—1130 A
photons of 4.76 x 10> ergs s~! em™2 s,

5 If 4y = 10, the resulting 4,; = 0.03 will not appreciably affect the calcu-
lation of the CO column density or the rotational temperature, as the effect of
extinction is smaller than our uncertainty in the flux of the lines.
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similar to the corotation radius of classical T Tauri stars for
which the inclination has been measured (Najita et al. 2003).
Applying the same parameters to calculate the spatial extent of
the low-J lines of 3CO emission, we find that the inner radius is
~0.4 AU and it extends to at least 2.8 AU.

Because the temperature of the hot gas (~2500 K) exceeds the
dust sublimation temperature, the most likely scenario for the hot
broad emission lines suggests a dust gap that extends from a few
solar radii out to a radius of perhaps 0.7 AU. This outer radius may
be a bit overestimated if the gas is pressure supported and not
in Keplerian motion with the central disk. For the cooler (200—
400 K) gas component, the emission lines may originate from a
region in the disk midplane that is optically thin (see Najita et al.
2000) out to nearly 3 AU. Alternatively, these cooler emission
lines could originate from a region in the vertically extended outer
disk atmosphere that is warmer than an optically thick inner disk
(e.g., Kamp & Dullemond 2004; Glassgold et al. 2004; Gorti &
Hollenbach 2004). Determining whether this last alternative can
account for the overlapping emission regions (see § 3.1), as arising
from different optical depths seen radially along the disk, will
require observations of other species such as OH and H,O that
will probe different temperatures and densities in the disk.

Since V1647 Ori and HL Tau are likely in similar evolu-
tionary states (both are Class I/Class II transitional sources), it
is interesting to note that Lin et al. (1994) have suggested that
HL Tau is an FU Orionis star in quiescence. For HL Tau, Brittain
et al. (2005) have shown that the CO emitting region extends to
only ~0.3 AU, in contrast to V1647, where the gas emitting
region likely extends much farther. Perhaps the disk of HL Tau
was previously in a state similar to V1647 Ori and has since
partially refilled the inner disk.

There are various disk thermal instability models that have been
used to explain the rapid accretion rates in FU Orionis type stars
(Bonnell & Bastien 1992; Armitage et al. 2001; Bell & Lin 1994;
Petrov & Herbig 1992), but none have satisfactorily accounted for
the initial rise times and duration of the outbursts. Recently, Lodato
& Clarke (2004) demonstrated that a thermal instability in the disk
might be the result of a mass build-up at a radius outward of a 10—
15 Jovian mass planet. In this scenario the build-up continues until
the critical value for thermal instability is reached, which leads to a
reasonable depiction of the observed accretion rates and brightness
rise times. The rise time is dependent on the planetary mass, and the
duration of the event is dependent on the propagation radius.

If an analogous phenomenon is now occurring for V1647
Ori, quantifiable effects of a refilling of the inner disk region
(R < 2.8 AU) should be measurable. As the inner disk is re-
filled with dust, the CO emission-line profiles should broaden
and reveal a smaller emitting region. Since this star has recently
brightened and high-resolution spectra are sensitive to small
changes in the CO emission-line profiles (on the order of a few
km s~1), the effects should be observable.

6. CONCLUSION

The high-resolution CO emission spectra of V1647 Ori show
many similarities with young T Tauri stars (Najita et al. 2003).
The widths of the broad '2CO (1-0), (2—1), and (3—2) emission
lines increase with increasing J-value, suggesting that the hot
CO gas (~2500 K) we are detecting is close to the central star.
The less broadened (lower J) >CO and '3CO lines are indica-
tive of more distant and cooler (~200—400 K) disk material. If
the recent outburst was tied to a clearing of the inner disk, future
observations can be used to quantify the distribution and tem-
perature of the CO emission lines as the gap refills with gas and
dust in preparation for the next outburst.
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Superposed on the low-J broad emission features are narrow
12CO absorption components typical of cold interstellar cloud
material (~20 K). The absorption-line results suggest that we
are viewing the central star through the cold intervening ma-
terial from the L1630 cloud along our line of sight. Model fits to
the prominent H,O and CO ice profiles are consistent with cold
(<20 K) amorphous water ice (7 = 0.65) and predominantly
apolar CO ice (7 = 0.58). The CO and H,O ices are unpro-
cessed (unannealed), similar to ices found in dense clouds. The
implication is that the very cold CO absorption as well as the
ices detected along the line of sight are not directly associated
with the star or disk of V1647 Ori.
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