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Introduction 
 

Whether you encounter electron powder diffraction patterns everyday, or run across them 
only rarely, interpreting them may require a bit of preparation.  But it's easy to lose track of the 
numbers for your microscope's camera constant, not to mention the bewildering array of lattice 
parameters and symmetries that one may encounter in the microscope.  In that context, we describe 
overlays you might want to assemble for measuring camera constants, and for recognizing crystal 
systems most likely to yield electron powder diffraction patterns in your lab.  Pulling this out of a 
drawer and/or computer folder thereafter might help you come up with quick answers, even if you 
haven't thought about analyzing diffraction data for quite a while. 

 
To be specific, spiral overlays [1] for use with powder diffraction patterns and diffraction 

spacing profiles can be:  (i) forgiving of uncertainties in camera constant calibration,  (ii) useful for 
determining camera constant given patterns from an known, and (iii) sensitive, once camera constant 
is known, to very small differences in lattice parameter.  By facilitating comparison of different 
lattices in a common physical metric (namely a diffraction experiment of fixed camera constant and 
scattering center density), their pedagogical value also extends to the comparison of crystal 
structures whose atomic environments share physical features (like nearest neighbor distances) in 
spite of major differences in symmetry.  The overlays can be put onto transparencies for use directly 
with negatives and hardcopy, or in digital form for use with digitized images. 
 
Camera constants and their absence 

 

FIG. 1:  Spiral body-centered, face-centered, and diamond-centered cubic overlays (green), used to identify a pattern of 
unknown camera constant (red) as face centered cubic (blue line). 

 
We take advantage of the fact that electron diffraction, thanks to the large size of typical 

lattice spacings compared to electron wavelengths, obeys the simple rule that ghkl ≅ λL/dhkl.  This 



says that lattice spacing dhkl gives rise to a ring of radius ghkl on a pattern of camera constant λL.  It's 
not always necessary to know λL.  For example, Figure 1 illustrates analysis of the experimental 
electron diffraction pattern from an unknown assemblage of nanocrystals (red), against overlays 
(green) for body-centered, face-centered, and diamond cubic lattices.  The engaging challenge is to 
look for "a radial line of intersections" between the diffraction rings and the overlying spiral.  When 
you find one that includes all lines in the diffraction pattern, you have a match "in spades"!  On 
Figure 1 you'll find the radial line of spacing matchups for this unknown pattern marked in blue.   
The azimuthal position of that matchup for various elemental compounds, if one had calibrated the 
camera constant of the pattern precisely, is also in blue. 
 
Finding and using camera constants 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2:  An overlay designed to be used as is, or copied to a transparency with a 3-inch square axis range, for camera-
constant calibration of polycrystalline Aluminum electron diffraction patterns from any system. 

 
Of course it is helpful to know λL.  Hence we recommend choosing a standard diffraction 

magnification (or camera length) and calibrating it with known specimens positioned at the standard 
(e.g. eucentric) height in the microscope.  For example, on our Philips EM430ST, camera length 
L=1200[mm] at 300[kV] yields an experimentally determined value of  λL near 23.1 [mmÅ].  Spiral 
overlays for a known (like that in Fig. 2 for polycrystalline Al) can in vernier nomogram fashion 
help you check the camera constant, e.g. before and/or after taking data on unknowns.   
 



 
FIG. 3:  Face-centered cubic overlay (green) used to distinguish Al from Ag (blue line) as the source of a pattern of well 

known camera constant (red). 
 

If you know your camera constant precisely, spiral overlays can then help detect quite small 
differences in lattice parameter.  For high symmetry structures where lattice parameter is indicative 
of atom type, this may also help determine the phase of an unknown.  For example, Fig. 3 shows an 
f.c.c analysis of the experimental 300kV electron diffraction pattern from a polycrystalline Al thin 
film.  In spite of the overlay's ability to reveal spacing matches even if the lattice parameter (or the 
camera constant of the pattern) is completely unknown, note how easily the angle of the match line 
for a carefully calibrated pattern allows us to distinguish between very similar lattices of Al and Ag. 

 
Comparing polymorphs 
 

Overlays may also help examine what changes, and doesn't, between polymorphs of the same 
phase.  For example, Fig. 4 shows a comparison of face centered cubic (f.c.c.) and hexagonal close 
packed (h.c.p.) overlays, illustrating what the associated lattices do and do not have in common. Tip: 
To see the fcc or hcp overlays alone, look through a pair of red-green glasses with but one eye open, 
so that you see only red (fcc) or green (hcp). Why do the diffraction spacings show so much overlap 
(yellow)? An atom-thick hexagonal array of atoms can be naturally stacked against a second array in 
one of only two ways, if the distance between nearest atoms is to be the same within and between 



arrays. Denote the alignment of the first array with the letter "A". The two possible adjacent layers 
then have "B" and "C" alignments. If one stacks such layers in the sequence ABCABC, one gets a 
face-centered cubic lattice (which strangely enough has four equivalent "stacking directions" along 
body diagonals of the cubic unit cell). Restacking of them in ABABAB form instead yields the 
corresponding hexagonal close-packed structure, which is not similarly isotropic (hence more 
spacings created than lost). In fact all f.c.c. spacings graphed are h.c.p. spacings too, except those of 
the form (h00). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 4:  Spiral overlays for face-

centered cubic and hexagonal close-packed crystals with identical interatom spacing, illustrating what changes and what 
stays the same as the crystal re-orders from ABCABC to ABABAB layering along one of the cubic three-fold symmetry 

axes. 
 
Some limitations 
 

The challenge of visually finding a radial line of spacing-matchups is quite a challenge for 
our pattern recognition skills.  It may be one place where computers are still working to catch up!  
The "aha experience", and satisfaction of finding that match, is also hard to beat.  The downside is 
that patterns which:  (i) are spotty (too few crystals),  (ii) have faint broad rings (crystals too small),  
or (iii) involve a mixture of lattice types, will be even more of a challenge.  You may be inclined to 
get computer-help to sort these out.  Finally, overlays for low-symmetry structures (e.g. like an 
olivine solid-solution series) will likely need to be generated on a case-by-case basis, i.e. as the 
likelyhood increases of encountering each phase.  Which brings us to... 



 
Do it yourself 

For creating the spirals, we use Wolfram's Mathematica's PolarPlot routine to spiral-plot a 
list of reciprocal lattice spacings multiplied by θ/2π (for θ values ranging from π/2 to 2π) and then 
add to the resulting plot stuff like axes, Miller index labels, etc. The plots are monochrome images 
by choice, so that they stay confined to one color channel in overlays. In the examples shown here 
they are also binary images, although peak intensities can also be recorded in the overlays if desired. 

For example, if list dlist={0.486,0.793,0.930,1.12} in [Å]-1 contains the first four 
reciprocal lattice spacings for "as small a diamond lattice cell as one is likely to encounter", then one 
can define f[θ_]:=dlist*θ/2π.  After loading in Mathematica's Graphics library, the command 
PolarPlot[f[θ],{θ,π/2,2π},PlotRange->{{-1.5,1.5},{-1.5,1.5}}] then plots spirals with 
axes like those above.  The Show command, with some graphics primitives, allows one to add text 
and other markings to this plot, which after resizing to 416 pixels square yields a screen image with 
nice crisp lettering for cut and paste processing. 

Experimental electron diffraction patterns are set up with the usual care to area selection, 
specimen eucentricity, and minimal beam convergence. These are digitized either during acquisition 
or from photographic negatives. When the data is on film, we often digitize diffraction patterns at 
600[dpi] and 16[bits/pixel]. These pattern images are then loaded into Adobe's Photoshop, and for 
display purposes (after contrast adjustment if appropriate) converted into 8[bit] RGB format. 

A monochrome spiral overlay in negative form (e.g. white lines on black) is then copied and 
pasted into the experimental image's green channel. Photoshop's MoveTool then allows one to center 
the overlay on the pattern, typically by aligning one of the more well defined rings to the radially-
symmetric tick marks on the overlay axis. Other markup information from Mathematica or 
elsewhere (e.g. highlighting for the radial line of intersections) may similarly be put into 
monochrome negative form and pasted into the blue channel. The result is a red experimental pattern 
with green/blue overlays, like the first three figures above. 

Generating overlays specific to your applications may come in handy.  Hence:  (i) 
worksheets for making overlays to order, (ii) a 600 dpi overlay for determining the camera constant 
of a polycrystalline Al pattern from your microscope, (iii) overlays for fcc, bcc, hcp and dcc crystals 
which you may need to rescale, and (iv) possible tutorials on request, may be found on the web at 
http://www.umsl.edu/~fraundor/pdifovly.html . 
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