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The international Einstein-First initiative for modernizing the K-12 curriculum1,2 may be the first 

comprehensive effort toward giving science students at all levels contact with 20th century 

insights, as followup e.g. to individual efforts with college physics textbooks like the 

“accelerator-first” text by Jonathon Reichert3, and the “Six Ideas” series4 by Thomas Moore. In 

the process, teachers will continue to find algorithmically simpler ways to introduce the 

concepts. In this paper we describe possible “one class period” use of a metric-first approach to 

describing motion and its causes, designed not to add new material for tests, but instead to 

highlight tools that both students and teachers might enjoy playing with on the side to improve 

their understanding of spacetime in the future. 

Introductory physics students have Newton’s laws drilled into their minds, but historically 

questions related to relativistic motion and accelerated frames have been avoided. With help 

from the metric equation, familiar 3-vector laws can be extended into the relativistic regime as  

long as one sticks with only one reference frame (to define position plus simultaneity), and 

considers something students are already quite familiar with, namely: motion using map-frame 

yardsticks as a function of time on clocks of the moving-object5. The question here is: How may 

one class period in an intro-physics class, e.g. as a preview before kinematics or later during a 

day on relativity-related material, be used to put the material we teach into a spacetime-smart 

context? 

For example, consider driving a car: When you look at your speedometer, what are you seeing? 

The reported speed is not relative to some inertial frame with synchronized clocks on the side of 

the road, since speedometers use the rotation of the wheels6 (which make static contact with the 

road) per unit time on the car’s on-board clocks. This “proper” ratio of map distance Δx to 

traveler time Δτ at any speed (e.g. even if lightspeed as for Mr. Tompkins7 was only ≈2.5 mph) 

turns out to be proportional to 3-vector momentum p, to have no upper limit, and to also be most 

simply related to kinetic energy and driver/pedestrian reaction times. It reduces to map distance 

Δx per unit map time Δt only at low speeds.  



Another remarkable everyday 

example of the “traveler point” 

approach is the fact that your 

phone accelerometer cannot 

detect gravity, as shown in Fig. 

1. It only detects the normal 

force which prevents us from 

falling through the floor. It also 

fails to detect inertial forces, like 

those which push you back into 

the seat (or to the outside of a 

curve) when your car accelerates 

(or follows a curved path). This 

is good news, coming from 

general relativity, which says that 

our accelerometer only detects 

proper forces but that the 

"undetected" class of geometric 

forces (associated with 

accelerated frames or curved spacetime) can in general be approximated locally as if they are one 

(or more) proper forces. This honored tradition, of treating geometric forces as proper, was of 

course started in the 17th century by none other than Issac Newton himself.  

For example, in our college algebra-based “basic physics II” class, Walker’s text8 has a chapter 

near the end on relativity. Our strategy is to introduce the book’s, along with traveler-point, tools 

for dealing with problems of time dilation, unidirectional velocity addition, and relativistic 

energies/momenta. Length contraction is off the table, because it requires two extended frames 

with synchronized clocks. Proper-velocity w = γv and restmass m is used instead of “relativistic 

mass” to preserve the standard relationship between momentum and velocity, and students are 

only being asked to master that subset of problems posed in the book which can solved with or 

without these “hybrid kinematic” tools, as shown in the table below. 

Table I: Newton at any speed, using equations from (cΔτ)2 = (cΔt)2 - (Δx)2  

Quantity\Variable  standard offering  traveler-point version  low-speed version  

time dilation 

γ≡Δt/Δτ  
γ = 1/Sqrt[1-(v/c)2]  γ = Sqrt[1+(w/c)2]  γ ≈ 1  

relative velocities 

v≡Δx/Δt; w≡Δx/Δτ  
vac = (vab+vbc)/(1+vabvbc/c

2)  wac = γabγbc(vab + vbc)  vac ≈ vab + vbc  

momentum  p = mγv  p = mw  p ≈ mv  

total energy  E = γmc2  E = γmc2  E ≈ mc2  

kinetic energy  K = (γ-1)mc2  K = (γ-1)mc2  K ≈ ½mv2 

More generally we suggest initial mention (even if only in passing) of the "traveler-point 

variables" (chosen because they either have frame-invariant magnitudes or because they don't 

Figure 1: Accelerometer data from a phone dropped and caught 3 times, 
captured wsith Google Science Journal. 



require synchronized clocks), namely traveler or proper time τ, proper velocity defined as map 

distance per unit traveler time w ≡ Δx/Δτ, and the net proper force Σξ = mα felt by on-board 

accelerometers. These are approximated at low speeds by the more familiar map time t, 

coordinate velocity v ≡ Δx/Δt, and net map-based force Σf = Δp/Δt. By sticking with 

displacements Δx and simultaneity defined by a single bookkeeper or map reference frame (i.e. 

the metric), as shown in Table II we can simply describe time-dilation γ ≡ Δt/Δτ and constant 

unidirectional proper acceleration α at any speed, even when there's no time to explore 3-vector 

proper velocity/acceleration or multi-frame phenomena like length contraction. 

The unidirectional proper-velocity addition equation given in Table II, for example, allows 

students to see the “collider advantage” in more visceral terms, which may even fire up the 

imagination of NASCAR fans as depicted in the relative velocity illustration of Figure 2 

(inspired by an XKCD cartoon). Similarly the unidirectional equations of constant proper 

acceleration given in Table II allow students to easily calculate the map and traveler times 

elapsed on constant proper-acceleration round trips between stars, as illustrated in Figure 3.  

  



Table II: Traveler-point dynamics in (1+1)D flat spacetime. 
Conserved energy E = γmc2, momentum p = mw, aging-factor γ≡δt/δτ, 

proper-velocity w≡δr/δτ≡γv, coordinate acceleration a≡δv/δt; 

In the first 4 rows, τ is traveler-time from "rest" with respect to 

the map frame, and α is a fixed space-like proper-acceleration vector. 

*Asterisk means that the (1+1)D relation also works in (3+1)D.  

relation  w<<c  (1+1)D  

map time elapsed t  t ≈ τ  t = c/α sinh[ατ/c]  

map displacement r  r ≈ vot + ½at2  x = (c2/α)(cosh[ατ/c]-1)  

aging factor γ ≡ δt/δτ  γ ≈ 1 + ½(v/c)2  γ = cosh[ατ/c]  

proper velocity w ≡ δr/δτ  w ≈ v ≈ vo + at  w = c sinh[ατ/c]  

relative velocity wAC  vAC ≈ vAB + vBC  wAC = γABγBC(vAB+vBC)  

*momentum p  p ≈ mv  p = mw = m(γv)  

*energy E  E ≈ mc2+½mv2  E = mc2+K = γmc2  

felt (ξ) ↔ map-based (f) 

force conversions  
f ≈ ξ  f = ξ  

*work-energy  δE ≈ Σf•δr  δE = Σξ•δr  

*action-reaction  fAB = -fBA  fAB = -fBA  

*map-based force (f)-momentum (p) 

*felt force (ξ)-acceleration (α)  
Σf = δp/δt ≈ ma  

Σf = δp/δt 

Σξ = mα 

 

Figure 2: Two 6.5 TeV LHC protons send messages to each other, while passing at proper velocities of about ≈ 6929 
lightyears/traveler-year, for a collider energy advantage of Krel/K ≈ 13,859 times the energy of stationary target collision. 



 

Figure 3: Round trip times and a sample thrust profile for a spaceship capable of constant 1-gee acceleration and avoiding 
collision with atoms. 

In passing, we should also mention the curious relationship between various energies and the 

time-dilation or differential-aging factor γ = Δt/Δτ. The basic relationship, given in Table II, 

allows us to say that kinetic energy of motion with respect to inertial frames in flat spacetime is 

K = (γ-1)mc2. Remarkably, however, in curved space time and in accelerated frames, relations 

like this also express potential energies associated with geometric forces. This is easiest to see 

when standing in an artificial (centrifugal) gravity well, where the kinetic energy from a fixed 

external point of view looks like a potential energy well of depth U ≈ ½mω2r2 to the rotating 

inhabitant. However, it also turns out to be true in a spaceship of length L undergoing constant 

proper acceleration α, where ΔU = (Δtleading/Δttrailing-1)mc2 ≈ mαL, and in the gravity of a non-

spinning sphere of mass M and radius R, where the escape energy for mass m on the surface 

(when R is much more than the Schwarzschild radius) is Wesc = (Δtfar/Δτ-1)mc2 ≈ GMm/R. This 

and the kinetic differential-aging factors must, for example, both be considered when calculating 

your global-positioning-system location.  

Cautions for "traveler-point dynamicists", especially when considering the vantage point of more 

than one "map-frame" or bookkeeper metric:  

 1st caution: Specify “which clock” when talking about time elapsed, and which "map 

frame" when talking about position.  

 2nd caution: Try to stick with a single map frame of yardsticks and bookkeeper or "metric 

time“ clocks. This takes discussion of length contraction and Lorentz transforms (both 

requiring two extended frames) off the table, but allows 3-vector dynamics to be added.  



 3rd caution: Like rates of energy change at any speed, map-based forces (magnitude & 

direction) differ from one frame to the next at high speeds, even if the frames are only 

moving at a constant speed with respect to one another. This frame dependence actually 

gives rise to a kinetic versus static breakdown of all proper forces, whose usefulness in 

the case when there are “oppositely charged” force-carriers is behind the 19th century 

distinction between magnetic and electrostatic fields.  

 4th caution: The simultaneity of separately located events is also frame dependent, i.e. 

differently moving observers may disagree on which of two "space-like separated" events 

came first, just as the filial ordering of non-descendant relatives in a family tree may 

disagree on an individual's generation9.  

 5th caution: Relative 3-vector proper-velocity addition (e.g. between co-moving reference 

frames) is possible, but may be complicated by both "clock changes" which affect 

component magnitudes, and by changes in the reference metric (which affect both 

component magnitudes and directions).  

 6th caution: If energy is not conserved in an interaction between objects traveling at high 

speeds, momentum may not be either since differently-moving frames allow trades 

between energy E and momenta p (as well as between motion-through-time δt/δτ and 

motion-through-space δx/δτ) because only a sum of both, i.e. c2 = c2(E/mc2)2-(p/m)2 = 

c2(δt/δτ)2-(δx/δτ)2), is frame invariant.  

 7th caution: Geometric forces like gravity and centrifugal in general only work locally, 

i.e. in regions within which your reference spacetime metric is “locally flat”. Extensions 

are possible, e.g. with tidal and Coriolis forces, by combining forces from separate 

regions.  

To provide space for discussing sample problems, and for the development of on-line calculators 

and simulators to further empower students and introductory teachers with this metric-first10 or 

"one-map two-clock"11 approach, we've created some space up here on google sites for further 

discussion.  

* Author e-mails are mwhv2@mail.umsl.edu and pfraundorf@umsl.edu.  
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