TEACHING PHILOSOPHY

I admit that I love teaching as much as I love science and truly believe that these two essential components of every chemistry professor cannot be separated, but do rather complement each other. I wish to express my appreciation to my university professors and my research advisors who taught me science, who taught me what chemistry is. I feel that teaching is as much a gift as a skill to be learned, although I have never had any formal training for teaching. I was born in Russia, where my grandfather was a high school and college teacher of mathematics, my grandmother taught music at school, and my mother was a piano teacher at the Music Academy. Students often visited our house, and from the childhood, I have understood what it means to be a good teacher. Students who graduated as many as 40-50 years ago still often call my mother to tell her how fortunate they were to study music with her. The same atmosphere was in my grandfather’s house. As a small child I was unable to understand why so many people on the street stopped to speak with my grandfather. When I grew up a bit, many people told me that he was the greatest teacher and the wisest man they had ever met. That was many years ago. Now being a teacher myself, I wish to thank him and my mother for all the passion to teach that I have received from them.

It is my belief that teaching can only happen in the context of a human relationship, and it is my desire to first create an atmosphere or learning environment in which all people in a room can connect. In the first few minutes of a lecture or a presentation, I try to establish the shared passion for chemistry as a common ground. In that territory of shared passion, the sharing of ideas or communication becomes easier. What I may think about a molecule, a reaction, a mechanism, or a topic need not be what my student thinks; rather, we think together, share our knowledge with each other, and learn together how to think better. I often use group assignments and chalk-board exercises, extended office hours, casual settings for study groups, and one-page quizzes in even the largest classes. It is my objective to maintain classes as communities of learners by keeping all constantly aware of the others’ objectives, different perspectives, and shared passions. In doing this, I attempt to teach students how to think as well as how to broaden their scientific knowledge base.

I derive equal joy from my students and my subject; I am equally interested in both. It is because my students know that I like and respect them and am truly interested in their ideas that they work hard to develop fresh ideas about their assignments and projects. I work equally as hard to make their learning efficient, enjoyable, and seemingly easy. When we work together, we discover why science elicits passion, including the passion to gain knowledge. Chemical science is itself an efficient, enjoyable, and seemingly easy way of starting to understand the complexities of the living world, of establishing relationships with it, and more importantly of knowing one’s self.

For some of my teaching evaluations, please refer to http://www.ratemyprofessors.com/ShowRatings.jsp?tid=464141
TEACHING ASSIGNMENTS - enrolment

Winter, 2017
Special Topics of Organic Chemistry: Carbohydrate Chemistry (Graduate Lecture Course, 3.0) - 10

Fall, 2016
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 93

Winter, 2016
Organic Chemistry II (Undergraduate Lecture Course, 3.0) - 63

Fall, 2015
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 103
Problem Seminar in Organic Chemistry (Graduate Course, 1.0) - 21

Winter, 2015
Organic Chemistry II (Undergraduate Lecture Course, 3.0) - 63

Fall, 2014
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 93

Winter, 2014
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 61

Fall, 2013
Organic Laboratory (Undergraduate Lecture/Laboratory Course, 3.0) - 17
Problem Seminar in Organic Chemistry (Graduate Course, 1.0) - 14

Winter, 2013
Special Topics of Organic Chemistry: Carbohydrate Chemistry (Graduate Lecture Course, 3.0) - 11

Fall, 2012
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 108

Winter, 2012
Organic Chemistry II (Undergraduate Lecture Course, 3.0) - 56

Fall, 2011
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 116
Chemistry Colloquium (Graduate Course, 1.0) - 49
Advanced Reading in Chemistry (Graduate Course, 1.0) - 2

Winter, 2011
Taught an 8-hour course on “Synthetic Carbohydrate Chemistry” to doctoral and post-doctoral students during the sabbatical leave at the Eastern Piedmont University, Novara, Italy - 10

Fall, 2010
Organic Laboratory (Undergraduate Lecture/Laboratory Course, 2 sections, 3.0 each) – 27
Advanced Reading in Chemistry (Graduate Course, 1.0) - 4

Winter, 2010
Special Topics of Organic Chemistry: Carbohydrate Chemistry (Graduate Lecture Course, 3.0) - 16
Problem Seminar in Organic Chemistry (Graduate Course, 1.0) - 19
Advanced Reading in Chemistry (Graduate Course, 1.0) - 5

Fall, 2009
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 90
Advanced Reading in Chemistry (Graduate Course, 1.0) - 9

Winter, 2009
Organic Chemistry II (Undergraduate Lecture Course, 3.0) - 65
Advanced Reading in Chemistry (Graduate Course, 1.0) - 9

Fall, 2008
Organic Chemistry I (Undergraduate Lecture Course, 3.0) - 97
Advanced Reading in Chemistry (Graduate Course, 1.0) - 6

Winter, 2008
Special Topics of Organic Chemistry: Carbohydrate Chemistry (Graduate Lecture Course, 3.0) - 19
Problem Seminar in Organic Chemistry (Graduate Course, 1.0) - 10
Advanced Reading in Chemistry (Graduate Course, 1.0) - 8

Fall, 2007
Organic Laboratory (Undergraduate Lecture/Laboratory Course, 2 sections, 3.0 each) – 35 total

Winter, 2007
Organic Chemistry II (Undergraduate Lecture Course, 3.0) - 53

Fall, 2006
Organic Laboratory (Undergraduate Lecture/Laboratory Course, 2 sections, 3.0 each) – 30 total

Winter, 2006
Special Topics of Organic Chemistry: Essentials of Carbohydrate Chemistry (Graduate Lecture Course, 3.0) - 11
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter, 2005</td>
<td>Problem Seminar in Organic Chemistry (Graduate Course, 1.0)</td>
<td>8</td>
</tr>
<tr>
<td>Fall, 2004</td>
<td>Organic Chemistry II (Undergraduate Lecture Course, 3.0)</td>
<td>60</td>
</tr>
<tr>
<td>Winter, 2004</td>
<td>Organic Chemistry I (Undergraduate Lecture Course, 3.0)</td>
<td>89</td>
</tr>
<tr>
<td>Fall, 2003</td>
<td>Organic Chemistry II (Undergraduate Lecture Course, 3.0)</td>
<td>46</td>
</tr>
<tr>
<td>Winter, 2003</td>
<td>Organic Laboratory (Undergraduate Lecture/Laboratory Course, 3.0)</td>
<td>14</td>
</tr>
<tr>
<td>Winter, 2003</td>
<td>Problem Seminar in Organic Chemistry (Graduate Course, 1.0)</td>
<td>6</td>
</tr>
<tr>
<td>Fall, 2002</td>
<td>Organic Chemistry II (Undergraduate Lecture Course, 3.0)</td>
<td>67</td>
</tr>
<tr>
<td>Winter, 2002</td>
<td>Special Topics of Organic Chemistry: Modern Carbohydrate Chemistry (Graduate Lecture Course, 3.0)</td>
<td>7</td>
</tr>
<tr>
<td>Fall, 2001</td>
<td>Structural Organic Chemistry (Undergraduate Lecture Course, 3.0)</td>
<td>53</td>
</tr>
</tbody>
</table>