SciFinder® enables you to find sci-tech information by entering the name of a scientist or researcher, regardless of whether you know the exact name under which the research was published.

1. Enter an author’s name. Click **Search**.

2. Select candidate names of interest. Click **Get References**.

Tips:
- Enter as much of the name as you know.
- Enter spaces, hyphens, and apostrophes as you would if you were handwriting the name.
- Replace special characters with equivalent character(s).
- Select **Look for alternative spellings of the last name** to account for name variations and typographical differences.
- For complicated names, try multiple searches and determine which give the best results.
- If you are unsure which name is the first and which is the last, try them in both orders.
3. Review your answers.

<table>
<thead>
<tr>
<th>References</th>
<th>Get Substances</th>
<th>Get Reactions</th>
<th>Get Related</th>
<th>Tools</th>
<th>Send to SciPlanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>449 References</td>
<td>O Selected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select All</td>
<td>Deselect All</td>
<td>Sort by: Accession Number ▼</td>
<td></td>
<td>Answers per Page [20]</td>
<td>1 2 3 4 5 6 ... 23</td>
</tr>
</tbody>
</table>

1. **Click chemistry: Discovery of new medicines**
 By Sharpless, K. B.
 Click chemistry is a modular approach that utilizes only the most practical and reliable chemical transformations. Its applications are increasingly found in all aspects of drug discovery, ranging from lead finding through combinatorial chemistry and combinatorial in situ chem., to proteomics and DNA research utilizing bioconjugation reactions. The transition of a 1,3-dipolar cyanoalkene is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reagents. The triazole products are more than just passive linkers; they readily...
 - Substances
 - Reactions
 - 0 Citings
 - Full Text
 - 0 Comments
 - 0 Tags

2. **Copper catalyzed cycloaddition of organic azides and 1-haloalkynes to prepare 1,2,3-triazoles**
 By Heh, Jason E.; Popp, Jonathan C.; Konovkina, Larissa; Sharpless, Kenneth B.; Fokin, Valery V.
 This invention provides a method for preparing a 1,2,3-triazole compound, comprising contacting an azide with a 2-substituted-1-haloalkyne in the presence of a copper catalyst and a copper-coordinating ligand (preferably a tertiary amine) in a liquid reaction medium, thereby forming a 1,2,3-substituted 1,2,3-triazole compound, including a halo substituent at the 5-position of the triazole, the organ portion of the organ, azide at the 1-position of the triazole, and the substituent of the 1-haloalkyne at the 4-position of the triazoles. A method for preparing 1-haloalkynes is also provided. Example compds...
 - Substances
 - Reactions
 - 0 Citings
 - Full Text
 - 0 Comments
 - 0 Tags

Tip: To limit the answer set to references with a particular co-author, refine with the name of a co-author.

4. Work with references... SciFinder allows you to work with reference answer sets in a variety of ways. For hints and tips, see the How To Guides for:
 - Analyze Reference Answer Sets
 - Refine Reference Answer Sets
 - Access Full Text
 - Identify Related Citations

CAS Customer Center
Phone: 800-753-4227 (North America) 614-447-3700 (worldwide)
Fax: 614-447-3751
E-mail: help@cas.org
Internet: www.cas.org

A division of the American Chemical Society