Author correction grid for reprints

Date: January 5, 2016
Author/Title: Cheng / A college course on relativity and cosmology
ISBN: 9780199693405 (hardcover) and 9780199693412 (paperback)

Those rows that are marked with * in the first column have their text/equations reproduced in the LaTeX supplement (generated by Scientific Word) so that they can be copy/pasted for easy typesetting.

Page number	Line /Eq.\# number	Search term/	Incorrect content / Instructions on how to correct	so that the corrected version reads as: " ... "
5	$6^{\text {th }}$ and $5^{\text {th }}$ lines above (1.9)	orientations	1. Change "orientations are" to "orientation is"; 2. Insert parentheses in the inline eqn. around $x_{j}-v_{i} t$	"... their relative orientation is specified by three angles α, β, and γ, the new coordinates are related to the original ones by $x_{i} \rightarrow x_{i}^{\prime}=[R]_{i j}\left(x_{j}-v_{i} t\right), \text { where } \ldots \prime$
6	(1.11)	Exercise 1.2	Remove the minus sign $\mathbf{F}=-G_{\mathrm{N}} \frac{m_{A} m_{B}}{r_{A B}^{3}} \mathbf{r}_{A B}$	$\mathbf{F}=G_{\mathrm{N}} \frac{m_{A} m_{B}}{r_{A B}^{3}} \mathbf{r}_{A B}$
*6	$2^{\text {nd }}$ line below (1.11)	separated	Insert the clause "pointing from B to A" after " $\mathbf{r}_{A B}=\mathbf{r}_{A}-\mathbf{r}_{B}$, "	"... separated by $\mathbf{r}_{A B}=\mathbf{r}_{A}-\mathbf{r}_{B}$, pointing from B to A. The force

19	line above (2.22)	(2.13)	Change the reference (2.13)	to "(2.14)"
20	line above (2.23)	(2.14)	Change the reference (2.14)	to "(2.13)"
*23	$2^{\text {nd }}$ line from the top.	Invariant.	Insert the sentences with inline equations, at the end of the $2^{\text {nd }}$ line from page top, which ends as "... an invariant."	" ... an invariant. To show this in detail, consider a clock moving with speed v. We can factor $d t^{2}$ out of (2.28) to get the differential interval along clock's path: $d s^{2}=\left(v^{2}-c^{2}\right) d t^{2}=-c^{2} d t^{2} / \gamma^{2}=-c^{2} d \tau^{2}$. То reach the last equality we have used the time dilation relation $d t=\gamma d \tau$ of (2.22)." INSTRUCTION: If the pagination is an issue, can we typeset the top parts of p. 23 to have the same width as the Exercise boxes (i.e., extending the width into the margin space)?
27	The last sentence of Exercise 2.10	twin	Change the two words "sees" to "thinks" and "run" to "runs" in "This should be so, even though each twin sees the other's clock run slow."	so that the sentence reads: "This should be so, even though each twin thinks the other's clock runs slow."
27	$3^{\text {rd }}$ line from the bottom of Exercise 2.11 box	Hint:	Replace the words "clock readings" by "inferred times" in "The solution involves a comparison of clock readings just before ..."	so it will read as: "The solution involves a comparison of inferred times just before..."
29	The line below (2.47)	times	Replace the word "when" by "of" in " ... denote the times when the A and B ..."	so that it reads as " ... denote the times of the A and B ..."

44	(3.54)		Insert a minus sign on the right hand side of the $2^{\text {nd }}$ equation	$\frac{\Delta \omega}{\omega} \approx-\frac{\Delta v}{c}$
46	Exercise 3.9		$1^{\text {st }}$ line: insert the word "inverse" in " ...is precisely the transformation ..." $4^{\text {th }}$ line: Change reference number from (2.13) to (2.14)	so the $1^{\text {st }}$ line reads: " ...is precisely the inverse transformation ..." so the $4^{\text {th }}$ line reads: "and the transformation relation (2.14) such as ..."
51	Figure 3.3 caption	0	Replace the last letter "O"	by "P" so the sentence becomes "... with the same absolute time as the origin P."
53	The paragraph below the bullet list	rotates Therefore	$4^{\text {th }}$ line: Insert " $=\tan ^{-1} b^{\prime \prime}$ after " $+\vartheta^{\prime \prime}$ in " x^{\prime} axis rotates by $+\vartheta$ relative to ..." $6^{\text {th }}$ line: Delete the word "Therefore" in "Therefore the lightcone bisects"	so that " x ' axis rotates by $+\vartheta=\tan ^{-1} B$ relative to ..." so the sentence becomes "The lightcone bisects"
69	Figure 4.5 (b)		Replace the label " u_{2} " on clock-2 in the picture on the right	by " u_{1} "
71	The line above (4.30)		Replace the last word "of"	by the parenthetical remark "(in power expansion)"
*72	$2^{\text {nd }}$ line below (4.35)	faster	Insert a new Sidenote 7 a at "... run faster ${ }^{7 a}$ than the clock..."	${ }^{7 a}$ Describing time dilation as "clocks run slower or faster" can be confusing. It may be helpful to keep in mind the equivalence of "less elapsed time" and "clock runs slow" --- as a slower clock has less elapsed time intervals.

*87	$\begin{aligned} & 1^{\text {st }} \text { line } \\ & \text { below (5.24) } \end{aligned}$		Insert a new Sidenote 9a so as "where ${ }^{9 a}$ we have used ..." with the new sidenote as	${ }^{9 a}$ We display the steps of differentiation in the first equation: Since we will differentiate with respect to x^{μ} having index μ, we should change the dummy indices in the sum $L(x, \dot{x})=g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{v}=g_{\lambda \rho} \dot{x}^{\lambda} \dot{x}^{\rho}$, $\begin{aligned} \frac{\partial L}{\partial \dot{x}^{\mu}} & =\frac{\partial}{\partial \dot{x}^{\mu}}\left[g_{\lambda \rho} \dot{x}^{\lambda} \dot{x}^{\rho}\right] \\ & =g_{\lambda \rho} \frac{\partial \dot{x}^{\lambda}}{\partial \dot{x}^{\mu}} \dot{x}^{\rho}+g_{\lambda \rho} \dot{x}^{\lambda} \frac{\partial \dot{x}^{\rho}}{\partial \dot{x}^{\mu}} \\ & =g_{\lambda \rho} \delta_{\mu}^{\lambda} \dot{x}^{\rho}+g_{\lambda \rho} \dot{x}^{\lambda} \delta_{\mu}^{\rho}=2 g_{\mu \nu} \dot{x}^{v} \end{aligned}$
*88	Sidenote 10		The whole sidenote is to be replaced by	${ }^{10}$ As we shall demonstrate in Chapter 11, in particular (11.84), equation (5.29) is a proper tensor equation. Even though $d^{2} x^{\sigma} / d \tau^{2}$ and $\Gamma^{\sigma}{ }_{\lambda \rho}$ have extra terms in their transformations, these extra terms mutually cancel.
*90	$7^{\text {th }}$ line below the 5.1.3 heading	familiar	Replace the two sentences "We are familiar ... the flatness theorem."	by "We are familiar from our experience that any curved surface can be approximated locally by a flat plane. The flatness theorem extends this notion to curved spaces in general."
94	$\begin{aligned} & 1^{\text {st }} \text { line } \\ & \text { below (} 5.44 \text {) } \end{aligned}$	frequency	Insert two words "locally measured" in "... because the frequency is inversely proportional ..."	so it will read as "... because the locally measured frequency is inversely proportional ..."
*98	Last sentence of	earth's	Delete the parenthetical comment "(acting over distances comparable to the	"... considered weak. (Here we are discussing cases with distances comparable to the earth's radius; over cosmological distance scales, even much weaker fields could be significant.)"

	the text in Chapter 5		earth's radius)" and add a parenthetical sentence at the end	
103	$2^{\text {nd }}$ line of Exercise 6.2 part (iv)	smaller	Replace the letter " n " in ".... Smaller than $2 n r$ as shown ... " by " π "	".... Smaller than $2 \pi r$ as shown ..."
108	Sidenote 8	equation	Insert a word "field" and a reference (4.7) in the $2^{\text {nd }}$ sentence "This follows from Newton's equation ... "	so it reads as "This follows from Newton's field equation (4.7) ... "
*109	Sidenote 9	derivation	Replace the $2^{\text {nd }}$ sentence "To carryout the derivation one would have to use the concept of covariant derivative, which ... "	by "The derivation requires covariant derivatives, which ..."
109	Sidenote 10	combinatori al	Parts of $2^{\text {nd }}$ and $3^{\text {rd }}$ lines cut out the 4 words "... the combinatorial result showing ...	so the sentence reads as "... the reader is invited to verify that out of the total of ..."
111	Sidenote 12	end	The last line: replace the 4 words "... at the end of ..."	by the word "in" so it reads as "... the Einstein equations in Section 11.3.2."
111	Last line	geometric	Replace the 2 words " ... geometric quantity ..." by "curvature term"	so it reads as "... and the curvature term on the left hand side ..."
112	(6.42)		Insert a minus sign and remove 4π	$\text { so as to read } \quad \square A_{\mu}=-\frac{1}{c} j_{\mu}$

*116	The line below (6.52)	cross	Revise the phrase "Now the cross term $d t d r$ in (6.50) ..."	to read: "When we substitute this into (6.50), the cross term $d t d r$ has a coefficient ..."
118	Above Example 6.1	performed	Insert a sentence at the end of the paragraph	"... have been performed. We will study in Chapter 7 black holes, compact sources of gravity for which $\mathrm{R} \sim r^{}$, so that GR correction is not small."
*119	$1^{\text {st }}$ paragraph at the top		Replace the entire paragraph "our spherically has the same coordinate time)."	by a shortened paragraph (the resultant space will be taken up by the insertion to be discussed in the next erratum): "To set up the coordinates we can first imagine the situation where gravity is absent. For a fixed t this spherically symmetric spacetime can be divided into a series of nested 2 -spheres with the usual spherical coordinates (r, θ, ϕ), each having a surface area of $4 \pi r^{2}$. The time coordinate t is chosen to be perpendicular to the other three so that $\mathrm{g}_{\mathrm{io}}=\mathrm{g}_{0 \mathrm{i}}=0$ as in (6.56). We now discuss the relation between these r and t coordinates and the proper radial distances and times measured by local observers."
119	$2^{\text {nd }}$ bullet item		Insert these two sentences at the end of paragraph " ... the time direction."	"... ... the time direction. It must be noted that if $g_{r r}<0$ and $g_{o o}>0$, as for $r<r^{}$ in the Schwarzschild metric (6.58), the space/time roles of the r and t coordinates switch. We will explore this more when we discuss black holes in Chapter 7."
*121	Fig 6.7(b) caption		Replace middle part of the caption "(b) In a fictitious... ... which truly ..."	By "(b) This equatorial plane is warped by gravity. We can picture it as a curved surface in a fictitious 3D embedding space, which truly ..."

122	Sidenote 28		In the middle change section number "... Section 4.3.2 ..." to	Section 4.3.3 ..."
130	$1^{\text {st }}$ line below Box 6.4		Change section number "In Section 4.3.2 $\ldots . . "$	"... Section 4.3.3 ..."
			"The" by the word "Its" At the end of the bullet insert the word "coordinates"	So it reads " \ldots space and time coordinates."

*141	Figure 7.4 caption		Replace the entire caption	Figure 7.4 An event horizon is a null surface, which is a 3D subspace in spacetime (spanned by $\overline{\boldsymbol{t}}, \boldsymbol{\theta}, \boldsymbol{\phi}$) that is everywhere normal to a lightlike vector. As the lightlike 4-vector $\overline{\boldsymbol{t}}$ (with null length $\overline{\boldsymbol{t}} \cdot \overline{\boldsymbol{t}}=0$) is perpendicular to the remaining basis vectors $\overline{\boldsymbol{t}} \cdot \boldsymbol{\theta}=\overline{\boldsymbol{t}} \cdot \boldsymbol{\phi}=0$, it is normal to the 3D surface but also lies in the surface. Thus the lightcones of all the points on the null surface are on one side of the surface. All timelike worldliness (sample shown as arrowed lines) are contained inside lightcones and thus can cross the null surface only in one direction. Therefore, a null surface is a one-way barrier, an event horizon.
142	Figure 7.5 caption		Delete the subscript 0 in $\left(l_{0} / m c\right)^{2}$	so the inline equation reads as $(l / m c)^{2} \simeq 4.6 r^{* 2}$
143	$3^{\text {rd }}$ and $6^{\text {th }}$ lines below (7.20)		Change the power (superscript) in the $3^{\text {rd }}$ line $l^{2} / r^{3} \rightarrow \infty$ and in the $6^{\text {th }}$ line $-l^{2} / r^{4} \rightarrow-\infty$	$\text { To } l^{2} / r^{2} \rightarrow \infty \text { and to }-l^{2} / r^{3} \rightarrow-\infty$
*150	(7.27)		Insert numerical value to the right hand side	$M_{\mathrm{Pl}}=\left(\frac{\hbar c}{G_{\mathrm{N}}}\right)^{1 / 2}=2.18 \times 10^{-8} \mathrm{~kg}$
156	$\begin{aligned} & 3^{\text {rd }} \text { bullet } 2^{\text {nd }} \\ & \text { and } 7^{\text {th }} \text { line } \end{aligned}$		$2^{\text {nd }}$ line: change the number " 0.32 " $7^{\text {th }}$ line: change the number " 0.27 "	$\begin{aligned} & \text { to " " } 0,31 \text { " } \\ & \text { to " } 0.26 \text { " } \\ & \hline \end{aligned}$
*159	(8.4)		Insert a term $=-\frac{\Delta \omega}{\omega}$ in the middle of the displayed equation to read	$z=\frac{\Delta \lambda}{\lambda}=-\frac{\Delta \omega}{\omega} \simeq \frac{V}{c}$

160	Eq.(8.8)		Change the value from " $\cong 14.46 \pm 0.16$ Gyr."	$\underline{\text { To }}$ " $\cong 14.42 \pm 0.16$ Gyr."
161	$4^{\text {th }}$ line above (8.12)		Change the inline equation from $V(t)=D(t) / t$	$\text { To } V(t)=d D(t) / d t$
162	$\begin{aligned} & \text { Box } 8.1 \\ & 5^{\text {th }} \& 6^{\text {th }} \text { line } \end{aligned}$	luminosity	```Turn the two words "luminosity" and "period" into plurals: "luminosities" and "periods"```	To read as "... luminosities and pulsation periods. "
162	Sidenote 11		Insert five words "and the RobertsonWalker metric"	${ }^{11}$ The cosmological principle and the Robertson-Walker metric will be discussed in Section 8.2.
163	(8.16)		Change the value from " (0.87 ± 0.04) "	To "(0.86 $\pm 0.2)$ "
163	(8.17)		Change the value from "§ $4.9 \mathrm{keV} / \mathrm{cm}^{3}$."	To " $\cong 4.8 \mathrm{keV} / \mathrm{cm}^{3}$. "
163	(8.18)		Change the value from "气 0.005 "	To "§ $0.0035 . "$
*164	Sidenote 13		Change the Sidenote and move its marking in the text to the line below Eq.(8.19) at the word "measurements ${ }^{13}, \ldots$ "	${ }^{13}$ Another gauge of Ω_{B} uses the power spectrum of the cosmic microwave background (discussed in Box 9.3 and displayed in Figure

			9.4). The relative heights of the peaks in the spectrum are also sensitive to baryon density.
*164	Paragraph on top, after (8.18)	Revise the paragraph " There is also ..." up till the last sentence: "From such considerations we find that"	The revised paragraph reads as "Baryonic matter also exists in the form of interstellar and intergalactic gas (referred to as intergalactic medium, IGM) that does not shine, but is subject to electromagnetic interactions and can thus be detected by its absorption spectra. One can use the IGM's absorption of light from distant bright objects such as quasars to measure its density and composition. This also helps us to measure the total baryonic abundance $\Omega_{\mathrm{B}}=\Omega_{\text {lum }}+\Omega_{\mathrm{gas}}$, regardless of whether it is now luminous or non-luminous. The theory of big bang nucleosynthesis (cf. Section 9.2) informs us that the abundances of the light elements (deuterium, helium, etc.) produced in the first few minutes after the big bang are sensitive to Ω_{B} (as shown in Figure 9.1). From such considerations we find that" [displayed Eq.(8.19)]
164	$2^{\text {nd }}$ line above (8.20)	Add a phrase at the end of the sentence "... attraction."	"... attraction, including gravitational lensing."
164	(8.20)	Change the numbers " 0.27 " and " 0.32 " to " 0.26 " and " 0.31 "	So the displayed equation (8.20) reads as $\Omega_{\mathrm{M}}=\Omega_{\mathrm{B}}+\Omega_{\mathrm{DM}} \simeq 0.05+0.26 \simeq 0.31$
167	(8.22)	Change the number " 0.32 " to " 0.31 "	So the displayed equation (8.22) reads as $\Omega_{\mathrm{M}}=\Omega_{\mathrm{B}}+\Omega_{\mathrm{DM}} \simeq 0.31$

167	$2^{\text {nd }} \text { and } 3^{\text {rd }}$ lines below (8.24)		$\begin{array}{\|l} 2^{\text {nd }} \text { line: Change the number " } 0.32 \text { " } \\ 3^{\text {rd }} \text { line: Change the number " } 0.27 \text { " } \end{array}$	$\begin{aligned} & \text { to " } 0.31 " \\ & \text { to " } 0.26 \text { " } \end{aligned}$
178	3rd line above (8.60)		Add a comma and two words of "it will" at the end of the sentence "... down and recollapse."	"... down, and it will recollapse."
179	$7^{\text {th }}$ line from top		Change the word "discuss" in the parentheses	So as to have "(discussed in Section 8.4.1 ...)
189	Top line	sidenote	Change the reference of Sidenote 31	To Sidenote 32
196	$5^{\text {th }}$ line $6^{\text {th }}$ line		Change "...neutron/proton ration.." Change "... thus constrain.."	$\begin{aligned} & \underline{\mathrm{TO}} \text { "... neutron/proton ratio ..." } \\ & \underline{\mathrm{TO}} \text { "... thus constrains ..." } \end{aligned}$
196	$3^{\text {rd }}$ line of point 2		Change "...300,000.."	T0 "... 40,000 ..."
196	The line above (9.25)		Change "... 0.5×10^{-30}..."	$\underline{\text { T0 }}$ "... $0.4 \times 10^{-30} \ldots$...
196	The line below (9.25)		Change "... Section 8.1.3 ..."	T0 "... Section 8.1.2 ..."

208	2 lines above and (9.48)		Replace the last sentence "At peak locations in ..." and (9.48) by	In this regime there is the correspondence between the angular separation of adjacent peaks ($\theta_{\text {pk-to-pk }}$) and multipole number: $\begin{equation} l \approx \frac{\pi}{\theta_{\mathrm{pk}-\mathrm{to}-\mathrm{pk}}} \tag{9.48} \end{equation*}$
209	$5^{\text {th }}$ line in Question 3		Revise " $n_{n} / n_{p} \simeq 1 / 7$ " and add a qualifying clause	To " $n_{n} / n_{p} \simeq 1 / 6$, which subsequently drops to $1 / 7$ by $t_{\text {bbn }}$ due to neutron beta decay."
212	$\begin{array}{\|l\|} \hline 9^{\text {th }} \text { line } \\ \text { below (10.1) } \\ \hline \end{array}$	Section	Change the reference "Section 8.1.3"	To "Section 8.1.2"
*212	$\begin{array}{\|l\|} \hline \text { Exercise } \\ 10.1 \\ \hline \end{array}$		Replace the last sentence "The estimate will depend on ..."	by "The estimate will depend on knowing that the scale factor evolves as the inverse of the temperature $\mathrm{a}_{\mathrm{RM}} / \mathrm{a}_{\mathrm{bbn}}=\mathrm{T}_{\mathrm{bbn}} / \mathrm{T}_{\mathrm{RM}}=\mathrm{O}\left(10^{5}\right)$."
216	$5^{\text {th }}$ line from bottom	equal	Delete the phrase "equal to the value (10.1)"	
218	The paragraph below (10.7)		```2 nd line: Insert a comma after "... }\mp@subsup{t}{\gamma}{\prime 5 th line: insert a comma after "... dark energy"```	
219	$2^{\text {nd }}$ line below (10.10)		Replace the word "These" of second sentence by the word "This"	

221	$\begin{aligned} & 1^{\text {st }} \text { line } \\ & \text { below } \\ & (10.11) \end{aligned}$	Insert " 4π " in the denominator of $r_{0}=$ $e^{2} / m_{e} c^{2}$ and add parentheses	so that it reads as " $r_{0}=e^{2} /\left(4 \pi m_{e} c^{2}\right)$ "
223	$2^{\text {nd }}$ line below (10.14)	Replace "(cf. Section 8.1.2)"	by "(cf. (8.13))"
*226	$\begin{aligned} & \text { Exercise } \\ & 10.2 \end{aligned}$	Replace the entire part (a) including three lines of the Hint; In part (b) move the word "in" in front of $\rho(a)$ to the beginning of (b) "Put in ..."	(a) Insert the present Friedmann equation (8.48) into the general equation (8.42) and then use (8.14) for the critical density to express the epoch-dependent Hubble parameter as $H(a)=H_{0}\left[\rho(a) / \rho_{c, 0}+\left(1-\Omega_{0}\right) / a^{2}\right]^{1 / 2}$ (b) Put in the scale dependence ...
229	Inline eqn above (10.27)	Change the value "14.46"	to "14.42"
230	$3^{\text {rd }}$ line below (10.32)	Replace the word "over" by "almost"	So the $3^{\text {rd }}$ line reads as "almost eight billion years...."
*236	The last bullet	Replace the entire b*ullet	- Einstein's field equation can also be derived from the principle of least action. We outline as well the steps leading to the Schwarzschild exterior solution outside a spherically symmetric source.

241	$4^{\text {th }}$ line below (11.22)	short	Insert a clause at the end of the paragraph "... (connection, for short)"	"... (connection, for short); cf. Sidenote 6 below."
242	Exercise 11.1	after	$7^{\text {th }}$ line: Replace the word "After" by "From"	so it reads "(11.29). From this, ..."
243	$5^{\text {th }}$ line below the heading 11.1.2	section	Replace the reference "Section 11.3" by	"In Section 11.2.1 (Box11.1), we shall derive..."
*244	Sidenote 6	tangent	Insert a sentence before the last sentence "We will see ... " so as to have	"... in its local tangent space. The Christoffel symbols are also called (affine) connection coefficients for their role in this process that maps (connects) tensors from one point to tensors at another point along a path as in (11.36). We will see ..."
245	Exercise 11.2		Insert the phrase "as in (11.37)" after the parenthesis in the $2^{\text {nd }}$ line	So that "(i.e., the tangent of the geodesic) as in (11;37) is unchanged ..."
245	$7^{\text {th }}$ line below (11.40)	vanish	Replace " $\partial^{2} \mathrm{~g}=0$, vanish" by "can vanish everywhere, $\partial^{2} \mathrm{~g}=0$,"	So that line reads " ... However, the second derivatives of the metric can vanish everywhere, $\partial^{2} g=0$, only for ..."
246	The paragraph below the heading	90	Insert two sets of parentheses at two separate lines	$7^{\text {th }}$ line: insert " $\left(\pi / 2\right.$ radians)" after " 90° " $11^{\text {th }}$ line: insert "(in radians)" after "angle"

	Angular excess			
247	Sidenote 10	around	$2^{\text {nd }}$ to the last line, " σ " should be typeset bold	"... rule around $\boldsymbol{\sigma}$ in the 2D case..."
249	Exercise 11.3		Insert the reference ", cf. (11.25)," in front of the parenthesis in the $2^{\text {nd }}$ line above (11.57)	so as to read as "...a mixed tensor, cf. (11.25), (instead of a contravariant vector) will lead to..."
251	(11.67)		*Line above (11.67) insert " s^{λ} "in front of $\frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}$ *(11.67) denominator on the left hand side, change " D " to " d " *3 ${ }^{\text {rd }}$ line below (11.67) insert two words "contraction of" in front of "Riemann" and insert at the end the phrase "with two factors of 4-velocity"	* "Factoring out the common $s^{\lambda} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}$ yields $\begin{equation*} \frac{D^{2} s^{\mu}}{d \tau^{2}}=-R_{\alpha \lambda \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau} s^{\lambda}, \tag{11.67} \end{equation*}$ * "in GR by the contraction of Riemann curvature tensor (11.40) with two factors of 4-velocity."
*252	$\begin{aligned} & \text { (11.73) and } \\ & \text { (11.74) } \end{aligned}$		Insert missing parentheses such as $\left(D_{\lambda} R_{\alpha \mu v}^{\gamma}\right) A_{\gamma}$	*(11.73) the first term on the right-hand-side $\left[D_{\lambda},\left[D_{\mu}, D_{v}\right]\right] A_{\alpha}=-\left(D_{\lambda} R_{\alpha \mu v}^{\gamma}\right) A_{\gamma}+R_{\lambda \mu \nu}^{\gamma} D_{\gamma} A_{\alpha}$ * (11.74) the $2^{\text {nd }}$ line on the right hand side $=-\left(D_{\lambda} R_{\alpha \mu \nu}^{\gamma}\right) A_{\gamma}-\left(D_{\nu} R_{\alpha \lambda \mu}^{\gamma}\right) A_{\gamma}-\left(D_{\mu} R_{\alpha \nu \lambda}^{\gamma}\right) A_{\gamma}$
257	Sidenote 15		Change the sign in the inline equation	$\mathcal{L}_{g}=R-2 \Lambda$

260	\#2.3	See	Insert the reference "(2.14)" in the sentence "See (2.13) and (2.18)."	so it reads as "See (2.13), (2.14), and (2.18)."
260	\#2.7	particular	Insert the reference " (2.28) " in "See Section 2.2.2, in particular (2.31) and Exercise 2.7."	so it reads as "See Section 2.2.2, in particular (2.28), (2.31) and Exercise 2.7."
261	\#4.8	observer	The $2^{\text {nd }}$ line: Insert the word "local" in "... distance of the observer..."	so it reads as "... distance of the local observer..."
263	\#6.5	covariantly	End of 2 ${ }^{\text {nd }}$ line: Delete the two words "covariantly constant,"	
*264	\#7.4		Replace the first two sentences "A null surface is a 3D subspace in spacetime made up ... surface, so it is everywhere tangent to lightcones on one side." Thus ...	by "A null surface is a 3D subspace in spacetime that is everywhere normal to (and tangent to) a lightlike null line. It is everywhere tangent to lightcones on one side." Thus ...
264	\#7.6	$1^{\text {st }}$ line	Insert a slash in $-\mathrm{Cl}^{2} r^{3}$	so it will read as $-C l^{2} / r^{3}$
*264	\#7.10		Rearrange a couple of words around the colon so it will read as	"One finds the following surprising correspondence: surface gravity on the horizon behaves like temperature, and horizon area like entropy."

265	\#8.5		Change the values from " 0.32 ", " 0.005 " and " 0,27 " to " 0.31 ", " 0.0035 " and " 0,26 "	So that item 5 reads as $\begin{aligned} & \Omega_{\mathrm{M}} \simeq 0.31, \Omega_{\mathrm{lum}} \lesssim 0.0035, \text { and } \Omega_{\mathrm{B}} \simeq 0.05 . \\ & \text { Thus } \Omega_{\mathrm{DM}}=\Omega_{\mathrm{M}}-\Omega_{\mathrm{B}} \simeq 0.26 . \end{aligned}$
*265	\#8.6, the first three lines		Insert "looking in any directions" and delete "chosen to be" so the first three lines read as	6. The cosmological principle: at any given instance of cosmic time, the universe appears the same at every point looking in any direction: space is homogeneous and isotropic. Comoving coordinates are a system where the time coordinate is the proper time
*266	$3^{\text {rd }}$ line from the top	regions	Insert a long clause after the words "... small regions" TO AVOID CHANGE IN PAGINATION ONE CAN CHANGE THE DISPLAYED EQUATION OF \#8.14 INTO AN INLINE EQUATION.	so as to read "... small regions, where a Newtonian description should be valid, because the gravity involved is not strong, and space can be approximated by a flat geometry (cf. discussion on p.175). It is only ..."
*271	Ex 3.4 two lines above the displayed equation		Replace "the Lorentz 4-velocity:" by "(3.31) which has two components: the time component yields the gamma relation, the spatial the addition of velocities."	In this way the revised sentence reads as "... the matrix multiplication (3.31) which has two components: the time component yields the gamma relation, the spatial the addition of velocities."
*271	Ex 3.8		Replace the entire 3.8 by	3.8 A change of momentum in the direction of propagation changes the speed and hence the gamma factor. A differential change in the transverse momentum does not.
272	Ex 3.10		```*1 'st line: Insert a subscript " i" in F on the left-hand side *2}\mp@subsup{}{}{\mathrm{ nd }}\mathrm{ line: Insert a part label: (c)```	$\gamma F_{i}=\frac{q}{c}\left[-E_{i}(-\gamma c)+\epsilon_{i j k} B_{k}\left(\gamma v_{j}\right)\right]$ (c) $K^{0}=\gamma \mathbf{F} \cdot \mathbf{v} / c$, because the dot-product

274	Ex 10.1		Replace the entire Ex 10.1	10.1 First show that in the RDU,$\dot{a} \sim a^{-1}$. Thus $(1-\Omega) \sim a^{-2} \sim a^{2} \sim T^{-2}$ leading to $\begin{aligned} \left\|1-\Omega\left(t_{\mathrm{bbn}}\right)\right\| & =\left\|1-\Omega\left(t_{\mathrm{RM}}\right)\right\|\left(T_{R M}^{2} / T_{b b n}^{2}\right) \\ & =O\left(10^{-4}\right) \times O\left(10^{-10}\right)=O\left(10^{-14}\right) \end{aligned}$
backcover	Year (sidereal)	sidereal	Change the value from " $3.15 \times 10^{7} \mathrm{~s}$ "	To " $3.16 \times 10{ }^{\text {7 }}$ "
backcover	Hubble parameter	parameter	Change the value from " 0.68 ± 0.08 "	To " 0.678 ± 0.0081 "
backcover	Hubble time	time	$\begin{aligned} & \text { Change the value from } \\ & \text { "9.79 } h^{-1 "} \end{aligned}$	To "9.78 $\mathrm{h}^{-1 "}$
backcover	Schwarzschild radius of the sun	Schwarzschi Id	Change the value from " $=2.96$ km"	To " $=2.95$ km"
backcover	Mass pf the earth		Change the value from $" 5.98 \times 10^{24} \mathrm{~kg} "$	To " $5.97 \times 10^{24} \mathrm{~kg}$ "
backcover	Schwarzschild radius of the Earth		Change the value from " $=0.886 \mathrm{~cm}$ "	To " $=0.887 \mathrm{~cm}$ "

