Relativity, Gravitation and Cosmology

A Basic Introduction

Second Edition

TA-PEI CHENG

University of Missouri–St. Louis

OXFORD UNIVERSITY PRESS
Contents

Preface xi

PART I PRELIMINARIES

1 Introduction and overview 3
 1.1 Relativity as a coordinate symmetry 5
 1.1.1 From Newtonian relativity to ether 5
 1.1.2 Einsteinian relativity 6
 1.1.3 Coordinate symmetry transformations 7
 1.1.4 New kinematics and dynamics 8
 1.2 GR as a gravitational field theory 8
 1.2.1 Einstein’s motivations for the general theory 8
 1.2.2 Geometry as gravity 10
 1.2.3 Mathematical language of relativity 11
 1.2.4 Observational evidence for GR 12
 1.2.5 GR as the framework for cosmology 14
 Review questions 14

2 Special relativity: The basics 15
 2.1 Coordinate symmetries 15
 2.1.1 Newtonian physics and Galilean symmetry 18
 2.1.2 Electrodynamics and Lorentz symmetry 19
 2.1.3 Velocity addition rule amended 21
 2.2 The new kinematics 22
 2.2.1 The basic postulates of special relativity 22
 2.2.2 Relativity of equilocality and simultaneity 23
 2.2.3 Time dilation and length contraction 26
 2.3 Lorentz transformation 28
 2.3.1 Physical meaning of various transformation terms 30
 2.3.2 The relativistic invariant interval 31
 2.3.3 Relativity is truly relative 32
 2.3.4 Two paradoxes as illustrative SR examples 32
 Review questions 35
 Problems 36

PART II RELATIVITY: METRIC DESCRIPTION OF SPACETIME

3 Special relativity: The geometric formulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Minkowski spacetime</td>
<td>42</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Basis vectors, the metric and scalar product</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Minkowski metric and Lorentz transformation</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Four-vectors for particle dynamics</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The velocity 4-vector</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Relativistic energy and momentum</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>The spacetime diagram</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Basic features and invariant regions</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Lorentz transformation in the spacetime diagram</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>The geometric formulation of SR: A summary</td>
<td>56</td>
</tr>
<tr>
<td>Review questions</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>58</td>
</tr>
</tbody>
</table>

4 The principle of equivalence

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Newtonian gravitation potential—a review</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>EP introduced</td>
<td>63</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Inertial mass vs. gravitational mass</td>
<td>63</td>
</tr>
<tr>
<td>4.2.2</td>
<td>EP and its significance</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Implications of the strong EP</td>
<td>67</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Gravitational redshift and time dilation</td>
<td>69</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Light ray deflection calculated</td>
<td>74</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Energy considerations of a gravitating light pulse</td>
<td>77</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Einstein’s inference of a curved spacetime</td>
<td>78</td>
</tr>
<tr>
<td>Review questions</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>79</td>
</tr>
</tbody>
</table>

5 Metric description of a curved space

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Gaussian coordinates</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Metric tensor</td>
<td>83</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Geodesic as the shortest curve</td>
<td>86</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Local Euclidean coordinates</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Curvature</td>
<td>90</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Gaussian curvature</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Curvature measures the deviation from Euclidean relations</td>
<td>92</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Spaces with constant curvature</td>
<td>94</td>
</tr>
<tr>
<td>Review questions</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>

6 GR as a geometric theory of gravity – I

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Geometry as gravity</td>
<td>100</td>
</tr>
<tr>
<td>6.1.1</td>
<td>EP physics and a warped spacetime</td>
<td>102</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Curved spacetime as a gravitational field</td>
<td>103</td>
</tr>
</tbody>
</table>
Contents

6.2 Geodesic equation as GR equation of motion 105
 6.2.1 The geodesic equation recalled 105
 6.2.2 The Newtonian limit 107
6.3 The curvature of spacetime 109
 6.3.1 Tidal force as the curvature of spacetime 110
 6.3.2 The GR field equation described 113
Review questions 115
Problems 116

7 Spherically symmetric spacetime – GR tests 117
7.1 Description of Schwarzschild spacetime 118
 7.1.1 Properties of a spherically symmetric metric tensor 118
 7.1.2 The Schwarzschild geometry and the embedding diagram 121
7.2 Gravitational lensing 124
 7.2.1 Light ray deflection: GR vs. EP 124
 7.2.2 The lens equation 125
7.3 Geodesics in Schwarzschild spacetime 129
 7.3.1 Precession of Mercury’s perihelion 130
 7.3.2 The Shapiro time delay of a light signal 135
Review questions 138
Problems 139

8 Black holes 141
8.1 Nonrotating black holes 142
 8.1.1 Time measurements around a black hole 143
 8.1.2 Eddington–Finkelstein coordinates: Black holes and white holes 145
 8.1.3 Kruskal coordinates and the wormhole 151
8.2 Orbits and accretion disks around a black hole 155
 8.2.1 Effective potential of the Schwarzschild spacetime 156
 8.2.2 The binding energy of a particle around a black hole 157
8.3 Physical reality of black holes 158
 8.3.1 The long road to the acceptance of the black hole’s reality 158
 8.3.2 Observational evidence of black holes 159
8.4 Appendix A: Rotating source of gravity 161
 8.4.1 Properties of an axially symmetric metric tensor 161
 8.4.2 Kerr geometry and the Penrose process 164
 8.4.3 Beyond the Schwarzschild and Kerr black holes 170
8.5 Appendix B: Black holes and quantum physics 171
 8.5.1 The Planck scale 171
 8.5.2 Hawking radiation 172
 8.5.3 Black hole thermodynamics 173
 8.5.4 Black holes and quantum gravity 174
Review questions 175
Problems 176
PART III COSMOLOGY

9 The homogeneous and isotropic universe 181
 9.1 The cosmos observed 182
 9.1.1 Matter distribution on the cosmic distance scale 182
 9.1.2 Cosmological redshift: Hubble's law 184
 9.1.3 Age of the universe 186
 9.2 Mass density of the universe 188
 9.2.1 Luminous matter and the baryonic density 189
 9.2.2 Dark matter and the total mass density 190
 9.3 The cosmological principle 194
 9.4 The Robertson–Walker spacetime 195
 9.4.1 The metric in the comoving coordinate system 195
 9.4.2 Distances in the RW geometry 197

Review questions 202
Problems 203

10 The expanding universe and thermal relics 205
 10.1 Friedmann equations 206
 10.1.1 The GR field equations for cosmology 206
 10.1.2 The quasi-Newtonian interpretation 208
 10.2 Time evolution of model universes 212
 10.3 Big bang cosmology 215
 10.3.1 Scale-dependence of radiation's temperature 215
 10.3.2 Different thermal equilibrium stages 217
 10.4 Primordial nucleosynthesis 220
 10.5 Photon decoupling and the CMB 223
 10.5.1 The universe became transparent to photons 224
 10.5.2 The discovery of CMB radiation 225
 10.5.3 Photons, neutrinos and the radiation–matter equality time 226
 10.5.4 CMB temperature fluctuation 230

Review questions 234
Problems 235

11 Inflation and the accelerating universe 237
 11.1 The cosmological constant 238
 11.1.1 Vacuum energy as source of gravitational repulsion 240
 11.1.2 Einstein's static universe 241
 11.2 The inflationary epoch 243
 11.2.1 Initial conditions for the FLRW cosmology 244
 11.2.2 The inflation scenario 246
 11.2.3 Inflation and the conditions it left behind 248
 11.3 CMB anisotropy and evidence for a flat universe 251
 11.3.1 Three regions of the angular power spectrum 251
 11.3.2 The primary peak and spatial geometry of the universe 254
Contents

11.4 The accelerating universe in the present epoch 256
11.4.1 Distant supernovae and the 1998 discovery 257
11.4.2 Transition from deceleration to acceleration 261
11.4.3 Dark energy: Further evidence and the mystery of its origin 264
11.5 The concordant picture 265
11.6 Appendix C: False vacuum and hidden symmetry 268
11.7 Appendix D: Quantum vacuum energy as the cosmological constant 271
Review questions 274
Problems 274

PART IV RELATIVITY: FULL TENSOR FORMULATION

12 Tensors in special relativity 279
12.1 General coordinate systems 280
12.1.1 Contravariant and covariant components 281
12.1.2 Coordinate transformations 282
12.1.3 Position and del operators in Minkowski spacetime 284
12.2 Manifestly covariant formalism for electromagnetism 286
12.2.1 The electromagnetic field tensor 286
12.2.2 Electric charge conservation 290
12.3 Energy–momentum tensors 291
Review questions 296
Problems 296

13 Tensors in general relativity 298
13.1 Derivatives in a curved space 299
13.1.1 General coordinate transformations 299
13.1.2 Covariant differentiation 302
13.1.3 Christoffel symbols and the metric tensor 304
13.2 Parallel transport 307
13.2.1 Component changes under parallel transport 307
13.2.2 The geodesic as the straightest possible curve 308
13.3 Riemannian curvature tensor 309
13.3.1 The curvature tensor in an n-dimensional space 311
13.3.2 Symmetries and contractions of the curvature tensor 313
Review questions 315
Problems 316

14 GR as a geometric theory of gravity – II 318
14.1 The principle of general covariance 319
14.1.1 The minimal substitution rule 319
14.1.2 Geodesic equation from SR equation of motion 320
14.2 Einstein field equation 321
14.2.1 Finding the relativistic gravitational field equation 321
14.2.2 Newtonian limit of the Einstein equation 323
14.3 The Schwarzschild exterior solution 325
14.4 The Einstein equation for cosmology 330
14.4.1 Solution for a homogeneous and isotropic 3D space 330
14.4.2 Einstein equation with a cosmological constant term 333
Review questions 334
Problems 335

15 Linearized theory and gravitational waves 337
15.1 Linearized theory of a metric field 338
15.1.1 The coordinate change called a gauge transformation 339
15.1.2 The wave equation in the Lorentz gauge 340
15.2 Plane waves and the polarization tensor 341
15.3 Detection of gravitational waves 343
15.3.1 Effect of gravitational waves on test particles 343
15.3.2 Gravitational wave interferometers 344
15.4 Emission of gravitational waves 346
15.4.1 Energy flux in linearized gravitational waves 347
15.4.2 Energy loss due to gravitational radiation emission 350
15.4.3 Hulse–Taylor binary pulsar 352
Review questions 355
Problems 356

PART V ENDNOTES

Answer keys to review questions 361
Solutions to selected problems 372
Glossary of symbols and acronyms 415
References and bibliography 419
Physical constants 425
Index 427