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Abstract

Despite the importance of measuring tropical forest biomass, the accuracy of bio-

mass estimates is poorly constrained due to fundamental weaknesses in the

design and implementation of field studies. We identify these issues and propose

a radical paradigm shift to advance tropical forest biomass research to a firmer

theoretical and empirical basis.

Introduction

Tropical forests store an estimated 193–229 Pg of carbon in

above-ground biomass (Saatchi et al. 2011; Baccini et al.

2012), or roughly 20 times the annual emissions from

combustion and land-use change (Friedlingstein et al.

2010). The quantity of biomass, usually measured in units

of mass�ha�1 (such as Pg or Mg�ha�1) varies among

continents, regions and landscapes because of climate,

disturbance history, geochemistry and idiosyncratic site

factors (Laurance et al. 1999; Baker et al. 2004; Letcher &

Chazdon 2009). Major research efforts have been directed

towards quantifying stocks of carbon in tropical forest

(Asner et al. 2010; Saatchi et al. 2011; Baccini et al.

2012). Given the twin pressures of land-use change and

deforestation in the humid tropics, the importance of such

estimates is obvious. In this essay we will argue that in fact

little progress is being made towards improving the accu-

racy of these estimates due to a series of fundamental

weaknesses in the design and implementation of field

studies. We first identify these issues, and then outline a

radical paradigm shift to put tropical forest biomass

research on a firmer theoretical and empirical basis.

The starting point for this discussion is the fact that no

technique of remote sensing and no conventional forest

inventory study directly measures biomass. Direct

measurement requires physical comparison to an object

traceable to an internationally accepted standard, provid-

ing an unambiguous and well-defined relationship’

(Woodhouse et al. 2012). In the case of forest inventory

studies, the most commonly measured variable is trunk

diameter, which can be measured directly. In contrast,

remote sensing instruments measure absorbed, transmit-

ted or reflected electromagnetic radiation. These measure-

ments may be correlated with biomass, but mass, the

amount of ‘stuff’ in a given volume of matter, can only be

directly measured by comparison to a known standard.

How then do we obtain conventional estimates of forest

biomass? Figure 1 illustrates the process. Measurements of

tree diameter and/or estimates of height are converted into

units of biomass using allometric scaling equations (ASEs;

Brown 1997; Chave et al. 2005) and then summed to

obtain a stand-level estimate that can be extrapolated to a

landscape or continent (Asner et al. 2009, 2010; Lewis

et al. 2009; Dubayah et al. 2010; Pan et al. 2011; Saatchi

et al. 2011). We refer to this stand-level prediction as
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estimated above-ground biomass (EAGB), and to biomass

quantified by direct harvest simply as biomass.

Pan-tropical estimates of forest biomass will necessarily

incorporate data from remote sensing, since only remotely

sensed data offer the potential to sample a significant frac-

tion of the immense area of this biome. Using data from

airborne or satellite systems, characteristics of forest struc-

ture or condition can be related to EAGB, and then

extrapolated to large areas (Fig. 1). Because predicting

EAGB using remote sensing begins with stand-level

EAGB, the accuracy of remotely sensed predictions cannot

surpass the accuracy of field measurements and ASEs used

to derive EAGB. In contrast to these indirect procedures,

plot-level biomass can be measured directly by harvesting

vegetation and weighing the component parts. This is

laborious and has been done in only a handful of studies

that we are aware of (e.g. Araujo et al. 1999; Chambers

et al. 2001).

We distinguish measurements from estimates. Measure-

ments are obtained directly (e.g. tree diameter), whereas

estimates are based on indirect approximations, usually

involving calibrating equations. All estimates and mea-

surements include sources of uncertainty, and a listing of

all sources of uncertainty and their magnitudes constitutes

an error budget. For both estimates andmeasurements, we

will emphasize the distinction between accuracy and preci-

sion. Accuracy is the difference between a measurement

or estimate and ‘truth’; precision is the variance among

repeated measurements or estimates, irrespective of accu-

racy (Zar 1996). Assessment of both accuracy and precision

requires replication. A technique could, for example, be

highly accurate (mean of replicates close to the true value)

but imprecise (high variance among replicates), or highly

precise (low variance of replicates) but inaccurate (e.g.

measured with an instrument calibrated with an incorrect

standard). Note that evaluation of accuracy requires some

method for directly assessing the variable being measured.

For biomass in particular, direct measurements of mass are

necessary to assess accuracy.

This distinction between accuracy and precision is fun-

damentally important. For many policy and management

issues, a measure of forest biomass that is precise but of

unknown accuracy may be sufficient. It is arguable, for

example, that a remotely sensed metric of forest structure,

one that should in general be correlated with forest carbon

content, might be sufficient for the needs of monitoring of

the sort envisioned by the Reduced Emissions from Defor-

estation and Degradation initiative (REDD+; UNFCCC

2012). For global carbon budgets and climate change sci-

ence, however, accuracy is essential. Determining the

impacts of tropical forest biomass carbon on global climate

requires that we know accurately how much carbon is

there. For example, projections of increases in atmospheric

CO2 due to tropical deforestation and temperature-induced

Fig. 1. Venn diagram showing a typical conceptual framework to estimate above-ground biomass in tropical forests. Field measurements of tree size

within a fixed area (shown in grey) can be combined with allometric models to predict above-ground biomass. These predictions can be summed over

many individual trees to obtain stand-level EAGB. Remote sensing variables such as canopy height or foliar chemical properties in the same fixed area can

be regressed against EAGB, and the regression equation can be used to predict EAGB in locations with remote sensing data where field measurements are

absent (area in white).
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biome shifts are based on assumptions about absolute

quantities of carbon in tropical forests. In this case accuracy

of estimates is the issue, not precision.

There are at least three sources of uncertainty that are

common to both measurements and estimates of biomass,

and the extrapolation of these numbers to large areas. One

is sampling design. The most common design is opportu-

nistic (i.e. to sample near roads or rivers where it is cheap-

est), with unreplicated plots. Ideally, samples would be

sited randomly, with replication, and stratified by environ-

mental gradients that are thought or known to affect forest

structure, such as climate, soil nutrients and disturbance

history (Laurance et al. 1999, 2010; Chazdon 2003; Malhi

et al. 2006). Inevitably, the total area in such intensively

studied plots is miniscule relative to the total extent of

tropical forest, and non-random plot locations may impact

extrapolation of biomass estimates or measurements if

locations are not representative of conditions throughout

large areas. The magnitude of this effect has been vigor-

ously debated and there is no clear consensus for tropical

forests (Körner 2003; Fisher et al. 2008; Chambers et al.

2009; Lloyd et al. 2009; Rutishauser et al. 2010). Because

tropical biomass estimates come from extrapolations far

beyond the area represented by ground samples, biogeo-

graphic variation in allometric relations, wood density and

soil fertility come into play, but these have yet to be sys-

tematically incorporated as sources of uncertainty.

Both field and remotely sensed estimates of biomass

depend on ASEs to convert diameters, or diameters and

heights, to biomass. Sources of uncertainty introduced

through ASEs include species diversity and wood density

in addition to the underlying strength of the ASE (Chave

et al. 2004). For example, species diversity in the humid

tropics is enormous, yet wood density is known for only a

minority of species. Chave et al. (2009) significantly

advanced our knowledge of wood density by compiling

data for 8412 taxa, but this is dwarfed by the estimated

total of 40 000–50 000 tropical tree species (Hamilton

et al. 2010). Even if an ASE is developed using local taxa

and environmental conditions, the relationshipwill always

include residual error (i.e. the relationship between tree

size and biomass does not have an r2 = 1). Graphs of bio-

mass against tree size show that biomass increases logarith-

mically with stem diameter (e.g. Brown 1997), and that

the spread of points around the ASE regression line

increases with tree size. This indicates that large-diameter

trees can take on a wider range of biomass values than

smaller trees. Because conventional approaches usually

work with logarithms and maximum likelihood parameter

estimates, this form of uncertainty is almost completely

ignored (Mascaro et al. 2011 is an exception).

A third, and to date unmeasured, source of uncertainty

is the possibility of positive bias in published ASEs due to

the harvest of trees with perfect form. In most cases there

is insufficient documentation to determine whether har-

vested trees were selected at random. Given the massive

amount of work involved, it seems to us parsimonious to

assume in these cases that individuals were selected to

have idealized form (i.e. entire crowns, cylindrical solid

trunks and no obvious defects). Many trees in the real

world are in fact not perfect and have a variety of condi-

tions that decrease their biomass relative to perfect speci-

mens (e.g. hollow trunks, missing major sections of crown

and residual trunk irregularities due to prior damage). The

magnitude of this potential bias has never been measured

by plot-level harvest.

Finally, biomass allometries differ greatly among the life

forms commonly assessed in forest inventories, and the

data for trees are much more extensive than those for

lianas (woody vines) and palms. Significant portions of

biomass are normally not sampled at all in forest inventory

studies (stems below a lower size class limit, epiphytes)

and can only be estimated by fudge factors applied to

stand-level data.

An additional source of uncertainty for estimating car-

bon stocks is the factor used to convert biomass to carbon.

This factor is commonly assumed to be a constant between

0.48 and 0.50, but recent work suggests this assumption

leads to a positive bias in carbon stock estimates (Martin &

Thomas 2011).

Because remotely sensed estimates of biomass begin

with plot-level EAGB, they incorporate all of the sources of

uncertainty described above in addition to their own,

instrument-specific errors. For example, light detection

and ranging (LiDAR) estimates of canopy height depend

completely on the ability to detect ground elevation. Reli-

ably detecting ground elevation under closed-canopy trop-

ical rain forest can be difficult (Dubayah et al. 2010), and

independent measurements to validate derived terrain ele-

vationmaps are generally not available. Analyses that inte-

grate multiple data types have their own distinct sources of

error (e.g. Saatchi et al. 2011; Baccini et al. 2012).

Relating remotely sensed data to EAGB requires that the

two data sources are co-registered. Uncertainly in the loca-

tion of either data source introduces uncertainty into the

relationship between EAGB and remotely sensed data.

This is a significant issue in closed-canopy tropical forests,

where obtaining differentially corrected GPS data for plot

locations can be difficult or impossible. There are methods

to assess the effects of geolocation error on the relation

between field and remotely sensed data (e.g. Blair &

Hofton 1999), but these are almost never used or reported.

In contrast to sources of uncertainty in EAGB, there are

also sources of uncertainty in direct measurements of bio-

mass by felling and weighing individuals in plots. Sawdust

and attached vegetation like epiphytes must be collected
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and weighed; a standard procedure for conversion of field

weight to dry weight must be followed; procedures to han-

dle trunks and crowns that are only partially within the

plot must be implemented. Scales and balances should be

calibrated to standard and traceable masses. It is clear that

there is very little overlap in the components of error bud-

gets of EAGB by forest inventory and/or remote sensing

and the error budgets of direct measurements of forest bio-

mass through stand-level harvest.

The core of the problem is the ground data: we do not

measure biomass, so the accuracy of biomass estimates is

not known. Researchers loosely refer to EAGB as ‘biomass’

simply because it is easier to estimate biomass than tomea-

sure it. In short, we do it because we can (see example in

Clark & Clark 2000).

The central theme of this essay is that estimated forest

biomass is not equal to measured forest biomass. As a sci-

entific community we have repeatedly committed what

has been termed ‘the fallacy of misplaced concreteness’

(Whitehead 1926), which is the error of ‘mistaking the

abstract for the concrete.’ We confound the abstract (an

estimate of biomass) with the concrete (a measurement of

biomass).

To understand how fundamental this problem is, it is

useful to consider the normal process of scientific research

and how that could, and we argue should, be applied to

measurement of forest biomass. Table 1 illustrates this

sequence with ground data of known accuracy and remo-

tely sensed data: (1) develop a model, in our case this

could be an ASE relating some remotely sensed metric to

EAGB; (2) gather data of known accuracy to test the

model by harvesting individuals and directly measuring

their size and biomass; (3) compare the predictions of the

model to the data; (4) repeat (1) to (3) until the desired

degrees of accuracy and precision are attained or the

model is discarded or modified. To our knowledge this has

never been done in any tropical forest, and consequently,

the accuracy of all current tropical forest biomass

estimates is unknown.

A radical paradigm shift

Future studies should move beyond individual-based

ASEs to focus on stand-level harvests that relate biomass

directly to remotely sensed data. Plots should sample

across the range of environmental gradients that are

known or suspected to influence forest biomass, and plot

sizes and orientations should be selected to facilitate inte-

gration with remote observations. All components of for-

est carbon should be harvested, including small stems,

epiphytes, lianas and hemiepihytes, as well as soil carbon.

In short, to quantify and improve the accuracy of tropical

forest biomass estimates, we must first measure biomass at

the relevant spatial scale. Plots, not individual trees, are

the link between field inventories and remotely sensed

data. With plot-level harvests, we are no longer concerned

about the problems of applying potentially biased ASEs,

and all pools of carbon can be directly measured. If the

environmental conditions of biomass harvest plots are

carefully defined, non-random plot locations may become

less of an issue, as long as plots are spread along the envi-

ronmental gradients of interest. As plot-level harvest data

accumulate it will become possible to quantitatively eval-

uate the magnitude of variation along different environ-

mental axes. Knowledge of the extent of this variation can

be used to prioritize future plot harvest locations and

potentially to evaluate the importance of opportunistic vs

random sampling.

Establishing a global database of biomass harvest plots

with associated remotely sensed data will require a signifi-

cant research commitment. Such a project, however, is

neither technically difficult nor even particularly expen-

sive, given the importance of accurately quantifying tropi-

cal forest carbon storage above and below ground. In our

opinion, the main obstacle towards such a project is not

strictly scientific. Cutting down patches of forest – chop-

ping the vegetation into small pieces and determining vol-

ume and mass, drying thousands of pieces of wood in a

battery of drying ovens – is laborious; there is nothing

glamorous or high-tech about the research that is needed.

Unless, however, we develop field measurements of plot-

level biomass and its relation to various types of remote

sensing, there will be scant empirical grounds for improv-

ing the absolute accuracy of the biomass estimates that

make up the vast majority of publications on tropical forest

biomass.

Remotely sensed estimates of above-ground forest bio-

mass are key for understanding and managing the global

carbon cycle and planetary ecology. The critical link

between remote sensing estimates of forest biomass and

measured forest biomass on the ground has yet to be

made. It is curious in the extreme that to preserve and

manage tropical forests in the face of multiple global

Table 1. Sequential steps to estimate forest biomass using remotely

sensed data and harvested trees.

1. Select calibration plots and assess with remote sensing instruments

2. Measure biomass in calibration plots by total harvest

3. Develop a relationship between remotely-sensed data and harvested

biomass

4. Select test plots and assess with remote sensing instruments

5. Predict biomass in test plots using relationship developed in (3)

6. Harvest test plots to measure biomass

7. Compare predicted biomass with measured biomass

8. Iterate to obtain desired level of accuracy and precision
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threats we are advocating cutting down a tiny bit more

forest. But the simple fact is that without plot-level

measurements of forest biomass linked to remotely sensed

observations, we will never be able to objectively assess

and improve the accuracy of tropical forest biomass

estimates.
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