
Regular Expressions

Sanjiv K. Bhatia
Department of Mathematics & Computer Science

University of Missouri – St. Louis
St. Louis, MO 63121

email: sanjiv@cs.umsl.edu

Abstract

Regular expressions provide a powerful tool for textual search in computers. The
language of regular expressions forms the basis for many applications and languages
in computers, including vi, sed, awk, and perl. In this article, I’ll present the use of
regular expressions to perform search and replace operations, using vi, sed, and awk
as the applications.

1 Introduction

Regular expressions provide one of the most powerful tools in computer science to perform
search and replace operations in textual data. Their power comes from the efficiency and
flexibility afforded by allowing for variable information in search patterns. They can be
extremely simple as just a string composed of letters and numbers. On the other extreme,
they can be extremely complex in the form of strings that are entirely composed of spe-
cial symbols that may not be easily decipherable. However, they follow simple rules of
grammar that are not hard to learn. It takes only a little practice to master the complexities
inherent in the set of special symbols. Furthermore, the set of special symbols is fairly
small and a person with limited experience can start to use this language quickly.

A regular expression is loosely defined as a string of letters, numbers, and special sym-
bols to describe one or more search strings. The search string may contain fixed or variable
information. For example, you may want to search for the stringgray in a text but you
may not be sure whether the author has spelled the string asgray or grey, with both the
spellings treated as correct by the spell checker. A regular expression allows you to specify

the variable information in search strings, while limiting the scope of search. Thus, both
grayandgreyare valid for search butgriy is not.

Any person, who has ever performed a search for a string in a document on the com-
puter, or even over the internet, has already been exposed to at least the simplest form
of regular expressions – the literal string being searched for. The above statement holds
regardless of whether the platform for search is running Unix, Windows, or some other
environment. In this article, I am going to limit myself to Unix/Linux environments, and
present the utilities from these platforms to illustrate the use and power of regular expres-
sions.

2 Character Set for Regular Expressions

A regular expression is composed of two types of characters – literals and metacharacters.
Literals are characters that represent themselves. In that respect, the entire alphabet – upper
case and lower case characters in English – are treated as literals. In addition, the numerals
act as literals most of the time.

Metacharacters are special characters that do not represent themselves. They are a
means to connect the literals and provide for variable information in the regular expres-
sions. It has been suggested that literals form the words in the language of regular expres-
sions while metacharacters provide the grammar.

An important metacharacter is a delimiter for the regular expression. Delimiters enclose
a regular expression at the beginning and end, and are always picked from the special
characters. Effectively, a delimiter should not be considered to be a part of the regular
expression. In the utilities such asvi andsed , a delimiter can be any special character
as long as we use the same character on both ends of the expression. More often than not,
people have used the character/ as the delimiter. The reason for this choice is because/
is used for search invi . Some utilities, such as thegrep family, do not require the use of
delimiters to enclose the regular expression.

The set of metacharacters used in a regular expressions is fairly small and is enumerated
as follows (notice the use of quoted metacharacters using\ character):

ˆ $. * [] \{ \} \ \(\)

In addition, the following metacharacters have been added to the above set to support ex-
tended regular expressions, such as the ones used inegrep

+ ? | ()

2

The character- is considered to be a metacharacter only within the square brackets to
indicate a range; otherwise, it is treated as a literal. Even in this case, the dash cannot
be the first character and must be enclosed between the beginning and the end of range
characters.

With the knowledge of character set, we can now start to develop the rules to create
regular expressions for search.

3 Basic Regular Expressions

A simple regular expression is one that is composed of just the literals. Recall that a literal
is defined as a character that represents itself. Thus, the charactera is expected to match
itself in any text string but it may or may not match its upper case versionA. Similarly, a
number2 matches itself in most of the circumstances.

In the rest of this article, I’ll enclose the regular expressions in a pair of/ characters,
and underline the matching portions in the text.

A simple regular expression/ring/ will match the following patterns:

The phone is ring ing
Joe proposed to Mary with a ring .

Similarly, the regular expression/day is/ matches

Today is a Tuesday.
John said that his day is made.

The expression/April 26, 1995/ matches

John was born on April 26, 1995 .

As seen from above, a simple regular expression contains literals that can be alphabets,
numbers, or special characters. In the next section, we’ll illustrate the use of metacharacters
to add variable information into the regular expressions.

4 Metacharacters for Variable Information

Metacharacters are used to include the variable information in text strings being searched
for. They are invariably selected from the set of special characters enumerated in Section
2. In this section, I’ll present the use of each metacharacter in a separate subsection.

3

4.1 Metacharacter .

The metacharacter representing period (.) is used as a variable to matcha single occurrence
of any character. Thus, the regular expression/.ing/ matches any character followed by
the stringing as follows:

John likes singing in the club.
Someone please stop the running child.

A sequence of periods will use multiple occurrences of characters. The expression
/lo..ed/ matches

Be careful with the loaded gun.
John entered the room and looked around.

A number of people use different separator for month, day, and year in dates. Thus, the
expression/04.26.2005/ will match any of the following formats of date:

Today’s date is 04/26/2005
Today’s date is 04-26-2005
Today’s date is 04.26.2005

4.2 Metacharacter pair []

The pair of square brackets enclose a set of characters such that any one of the specified
characters is considered to be a match. Thus, a vowel can be matched by the expression
/[aeiou]/ . We can look for a word that contains two consecutive vowels by specifying
two sets, one after the other, as/[aeiou][aeiou]/ to match

It is a bea utiful day.
Be careful with the loa ded gun.

We can use the metacharacter- to specify a range of characters. For example, the
expression/[a-z]/ specify all the lower case letters of the English alphabet. Similarly,
the expression/[0-5]/ specifies all the digits in the set{0, 1, 2, 3, 4, 5} . This
set is also useful when we try to combine a search where we are unsure of the first character
being in upper case or lower case. For example,/[sS]unday/ matches

Sunday is a holiday.

The pair of square brackets are also used to indicate the absence of a set of characters.
This is achieved by starting the set with the metacharacterˆ . The pattern/[qQ][ˆu]/
searches for all the occurrences ofq or Qthat are not followed by au, as

Iraq does not export much oil these days.

4

Within a pair of square brackets, some metacharacters, such as\ , $, . , and* , lose
their special meaning. Also,ˆ is special only if it is the first character after the left square
bracket.

4.3 Metacharacters ˆ and $

The metacharactersˆ and$ are used toanchora regular expression to the beginning and
end of a line. A regular expression starting withˆ matches the expression at the beginning
of the line. For example,/ˆIraq/ will match in a line only if it occurs at the beginning
of a line, such as

Iraq is in news these days.

but it will not match the word if it is in the middle of the line, such as

There was no front page news on Iraq today.

In a similar manner, the metacharacter$, if present at the end of a regular expression,
matches the expression at the end of the line. The expression/Iraq$/ matches

That man is from Iraq

Notice that the string being searched for is not followed by any character.

4.4 Metacharacter *

The metacharacter asterisk (*) can follow a regular expression that represents a single
character or even an arbitrary regular expression to represent a pattern of characters. For
now, let us concentrate on single character regular expressions. The asterisk represents
zero or more occurrences of theprecedingregular expression. This is a departure from the
interpretation of* in Unix shell where it is used as a wildcard for any number of characters
regardless filenames without regard to preceding character.

As a first example, consider the expression/ab*c/ . This expression will match the
following strings

I can hardly follow John’s ac cent.
Barney knows his abc .
While typing abbbbbbc , the key on b got stuck.

The first example matchesac for zero occurrenceof b (character preceding*). The
regular expression preceding* can be a set of characters enclosed in a pair of square brack-
ets. This will match zero or more occurrences of any character described in the set. For

5

example, a number of times, we get emails that have been forwarded from one person to
another. These emails generally have a set of characters preceding each line described as
> >> > > > depending on the mailer settings. Since these characters occur at the begin-
ning of line, we can anchor our regular expression as/ˆ[>]*/ and delete them invi by
the command

:%s/ˆ[>]*//

A general rule to remember for metacharacter* is that it attempts to find the longest
possible match in a line. The expression/(.*)/ is used to indicate a set of characters
enclosed in parentheses. However, if there are two sets of parentheses in the line, it encloses
both of them as

Let us look for (this) and (that) .

If we want to match just the first set of characters in parentheses, we have to use an
expression such as/([ˆ)]*)/ , which looks for the left parenthesis, then any set of char-
acters other than the right parenthesis, and finally, the right parenthesis.

Let us look for (this) and (that).

4.5 Searching for the Occurrence of Metacharacters

The metacharacters can be searched by quoting, using the character\ to precede the
metacharacter. The\ makes the metacharacter lose its special meaning and it is treated
as a literal. As an example, the period in a sentence can be searched by preceding it with
\ , such as/i\.e\./ , and it matches

Let us look for the period, i.e. .

4.6 Range Metacharacters

It is also possible to specify a predetermined number of characters by using the pair of
quoted braces enclosing a range. For example, a set of five consecutiveas can be described
by /a\{5\}/ , a set contained at least 3as can be described by/a\{3,\}/ , and a set
containing between 3 and 7as is described by/a\{3,7\} . The number to specify the
range must be positive and less than 256.

6

4.7 Bracketing Expressions

The regular expressions can be bracketed by using a pair of quoted parentheses, also known
as tagged metacharacters. This allows the search for a repeating regular expression that is
made up of more than one character. For example, the multiple consecutive occurrences of
stringabc can be searched by/\(abc\)*/ . This will match a sequence such as

John speaks only abcabcabc and nothing more.

The range metacharacter can be used to search for a fixed number of repetitions such
as/\(abc\)\{2\}/

John speaks only abcabc abc and nothing more.

A regular expression to validate money amounts can be written as
/\$[0-9]\{1,3\}\(,[0-9]\{3\}\)*\.[0-9]\{2\}/ . This expression will match

The CEO earns $11,540,000.00 .
The minimum wage should be $8.45 .

5 Using Regular Expressions in Editing

Regular expressions make it easy to perform editing in large documents, specially when we
are dealing with variable information. We have already see the use of regular expressions
to perform search in documents. In this section, we’ll see the simple search and replace
operation, and then, move on to manipulate the variable information to our convenience.

The simple search and replace command invi or sed os given bys . In sed , the
command is given as

s/ search pattern/ replacement pattern/

wheresearch pattern andreplacement pattern are appropriate strings. A simple exam-
ple to change a name is given by

s/Clinton/Bush/

Another example to replace some variable information with fixed information will be

s/[tT]hen/now/

In case we want to add some information before or after a variable pattern, we can do
that easily by using the symbol ampersand (&). For example, if we have a set of lines as
follows

7

John Smith makes 8.50 an hour.
Mary Jo Ellen makes 9.25 an hour.

and we want to put the$ sign in front of the numbers, we can achieve that by using
s/[0-9]\.[0-9][0-9]/\$&/

resulting in

John Smith makes $8.50 an hour.
Mary Jo Ellen makes $9.25 an hour.

Finally, we can use quoted parentheses toremembervariable information in the search
pattern and put that in replacement string using quoted digits. Within a regular expression,
a quoted digit (\n) takes on the value of the string that the regular expression beginning
with thenth \(matched. Let us assume a list of names in the format

last-name, first-name initial

We can change it to the formatfirst-name initial last-name by using the fol-
lowing sed command

s/\([ˆ,]*\), \(.*\)/\2 \1/

Notice how the first quoted left parenthesis matches the second part in the replacement
string \1 . It should also be noted that quoted parentheses can be nested into another pair.
This does not cause any ambiguity in identification as they are identified by only the open-
ing left parenthesis.

Regular expressions in Unix also include some shortcuts to operate on a set of charac-
ters. Let us say that you have a document typed in all capital letters. You are required to
change it such that the first letter of each word is capitalized but all the other letters are in
lowercase. This is easily achieved by

s/\<\([A-Z]\)\([A-Z]\{1,\}\)/\1\L\2/g

This will change the sentence

THE GAS PRICE IS EXTREMELEY HIGH.

to

The Gas Price Is Extremeley High.

8

6 The Final Word

In this article, I have attempted to describe the use of regular expressions for search and
replacement in the context of some Unix applications. Regular expressions provide a pow-
erful language but as with any language, you have to practice using the language to become
fluent in it. Of course, once you know the language well, it becomes almost second nature
and you start wondering how you lived without it for so long.

A note of caution. Regular expressions are interpreted by an underlying regular expres-
sion engine. And it appears that the engines do not always follow a standard. The issue
gets very frustrating when you are trying to learn something and some of the things do not
work as expected. A while back, I was on a Sun machine and tried to use the expression
cat\(cat\)* to search for a number of consecutivecat patterns in a document. I was
perplexed when the expression worked on Linux but not on Sun. And then, I discovered
that it works if I use the utilities specified in/usr/xpg4/bin but not in /usr/bin
which happened to be the ones set as my default.

It is my hope that this article will lead you to an exciting journey of regular expressions.
Happy regex’ing!!!

References

[1] J. E. F. Friedl.Mastering Regular Expressions. O’Reilly, Sebastopol, CA, 2002.

9

