
Cost-benefit Analysis of Using Heuristics in ACGP

John Aleshunas

University of Missouri St. Louis

St. Louis, United States

jja7w2@umsl.edu

Cezary Janikow

University of Missouri St. Louis

St. Louis, United States

janikow@umsl.edu

Abstract—Constrained Genetic Programming (CGP) is a

method of searching the Genetic Programming search space

non-uniformly, giving preferences to certain subspaces

according to some heuristics. Adaptable CGP (ACGP) is a

method for discovery of the heuristics. CGP and ACGP have

previously demonstrated their capabilities using first-order

heuristics: parent-child probabilities. Recently, the same

advantage has been shown for second-order heuristics:

parent-children probabilities. A natural question to ask is

whether we can benefit from extending ACGP with deeper-

order heuristics. This paper attempts to answer this question

by performing cost-benefit analysis while simulating the

higher-order heuristics environment. We show that this

method cannot be extended beyond the current second or

possibly third-order heuristics without a new method to deal

with the sheer number of such deeper-order heuristics.

Keywords-Genetic Programming, Adaptable Constrained

Genetic Programming, Building Block Hypothesis, Heuristic.

I. BACKGROUND

Genetic Programming (GP) is an evolutionary computation
method merging concepts from computer science and biology.
It has been shown to provide robust solutions for problems
such as evolving computer programs, designing logic circuits,
discovering mathematical equations, and solving other
optimization and combinatorial problems where other solutions
are not practical or unknown [2].

Genetic Programming represents a population of candidate
solutions as trees, lists or graphs, but the dominant
representation, and the one this paper concentrates on, is the
tree representation [2]. These trees are composed of elements
from a predetermined set of functions and terminals, called
here labels. A given function can label any node whose number
of subtrees equals the function arity. Terminal labels, such as
constants or variables from the problem environment, label the
leaves.

The search space is the space of all (up to some size limit)
trees that can be labeled with the provided labels. Somewhere
in the space, we should find the actual solution to the problem
at hand or otherwise GP will not be capable of ever finding the
solution. The quality of a single solution-tree, and therefore its
“proximity” to the sought solution, is the tree’s evaluation
through a provided black-box fitness function.

After the initial sampling in the GP population, new
solutions are evolved using genetic operators such as crossover
and mutation, while guided by selection based on fitness

evaluations. In crossover, randomly chosen sub-trees are
exchanged between two parents. In mutation, a randomly
chosen sub-tree is regrown.

Figure 1GP solution represented as a tree for the algebraic

formula x*x+y*y+z*z

One critical issue with GP design is the choice of the labels.
The labels, along with limitations on explored tree sizes,
determine the search space for GP (while population, selection
and operators determine the means of searching the space). If
the label set is not sufficient, the desired solution does not exist
in the search space and therefore GP will never find it. This is
often referred to as the sufficiency principle [2]. To avoid this
problem, the label set is often greatly enlarged. Unfortunately,
this increases the search space and generally reduces the GP
effectiveness [2][4]. To answer this challenge, a number of
methods have been proposed that ultimately prune, or reduce
the effective search space, such as STGP, CFG-based GP, etc.
[2].

Constrained GP (CGP) is another such method. It allows
certain constraints on the formation of labeled trees –
constraints on a parent and one of its children at a time [4]
(CGP also supports restrictions based on types, along with
polymorphic functions, but this paper does not use these
extended capabilities). The constraints are processed in a
closed search space by operators with minimum overhead:
closed search space refers to generating only valid parents from
valid children [4]. The constraints in CGP, called heuristics,
can be strong, that is conditions that must be satisfied, or be
expressed weakly as probabilities. Such local probabilities
effectively change the density or uniformity of the GP search
space. CGP has been proven very successful on a number of

standard GP problems especially when using the strong
constraints [4,6].

CGP requires the user to know the heuristics – CGP only
provides means of adjusting the search space given the
heuristics. Adaptable CGP (ACGP) was developed to automate
the process of discovery of such useful heuristics, and the
method was also shown to efficiently learn and apply the
heuristics [5,7]. Recently, the method has been extended to
more complex heuristics. The stronger heuristics, and the
method, have been validated as providing efficient speed up to
evolution in cases where second-order structures exist in the
problem at hand [1].

ACGP contrasts from other GP improvement techniques
such as Estimation of Distribution Algorithms (EDA) for GP
[10], applying grammar-based methodologies to GP [9] and
semantic optimization methods [8]. Those methods attempt to
build probabilities on labeling specific tree nodes rather than
tree-position-independent probabilities as ACGP allows. In
addition, ACGP works within a standard GP (extends lilgp).

In ACGP, with the growing complexity of the heuristics,
come costs associated with the processing and storage of these
heuristics. Second-order heuristics do not pose significant
overhead; however, higher order heuristics do. The paper
analyzes the cost-benefit relationship for the heuristics.
Because no implementation exists beyond the second order, the
benefits of higher-order heuristics are speculated, and the cost
is simulated.

In this paper, we first introduce the basic principles of
ACGP, its heuristics and their discovery method, followed by
cost analysis. Then, we perform complete cost-benefit analysis
for first and second order heuristics, tracing benefits and
combing them with cost. Finally, we discuss the benefits of
higher order heuristics, and measure their cost by using the
current implementation to simulate cases with higher demands.
We close by suggesting some ways to alleviate the cost
problem.

II. HEURISTICS AND ACGP

A. Heuristics in ACGP

Heuristics in Artificial Intelligence are considered to be
chunks of information, or rules-of thumb, that can lead to some
improvements in knowledge or in processing. In ACGP,
heuristics are probabilities attached to certain labeled
structures. First order heuristics are probabilities of certain
parent-one-child structures, such as the probability that the
binary function ‘+’ will have ‘+’ as its left argument, as
illustrated in Figure 2(a). Second order heuristics are
probabilities of certain parent-all-children structures, such as
the probability that the binary function ‘*’ will apply
simultaneously to ‘y’, as illustrated in Figure 2(b). One may
revert this terminology to zero order heuristics, that is just label
probabilities (these are less useful except for the root node),
and extend to higher order heuristics where a node is
considered with its children and their children, etc.

The heuristics are very useful in guiding the GP search. For
example, if the structure as labeled in Figure 2(b) has high
probability, that is it is a useful structure (useful building

block), and some tree is being mutated with ‘*’ to label a node,
then the two children of this node would have higher chance of
being labeled ‘y’ and ‘y’ as according to this heuristic. The
same would happen in crossover – if the first order heuristics
from Figure 2(a) has high probability, the tree in Figure 2 is
chosen for crossover and the root’s left subtree is chosen as
crossover node, CGP would favor bringing subtrees starting
with ‘+’ from the other parent.

Figure 2a) First order and b) second order heuristics on trees

In EDA methods, some probabilities are maintained for
specific positions in the tree [10]. In ACGP, there are two kinds
of heuristics instead. Global heuristics are position-specific as
they provide information starting from the root node. Local
heuristics and position-independent and they can be applied in
any position in the tree.

B. Discovery of Heuristics in ACGP

In ACGP, the method for discovery of heuristics is
straightforward – the heuristics are discovered by analyzing the
best performing trees. This process does not take place after
every generation as it has been shown that more time is needed
for the emergence of such structures [5]. Instead, this happens
after a number of generations, called an iteration.

The building block hypothesis asserts that evolutionary
processes work by combining relatively fit, short schema to
form complete solutions [3]. The problem with this assertion is
that most problems are not decomposable and it is often
difficult to determine the fitness of a particular building block
let alone determine its contribution to the individual’s fitness.
ACGP uses the assumption that building blocks, or structures,
that occur more frequently in the fittest population members
contribute to the fitness of those solutions and are therefore fit
building blocks.

In addition to using multi-generation iterations, ACGP also
adjusts its heuristics from the observed frequencies, rather than
greedily using the frequencies as its heuristics – empirical
results show that heuristics applied too greedily can lead to
premature convergence into a search subspace which is
incapable of representing the sought solution [5]. This is due to
the fact that GP, given its large label set, searches a space of
many redundant representations and early heuristics tend to
conflict between these representations. Once the search begins

to converge to a specific solution and thus into specific
representation, the heuristics are more reliable as a set.

C. Representation and Cost of the Heuristics in ACGP

ACGP computes its frequencies and represents its heuristics
in tables, eventually translated into so called mutation tables.
Table representation allows for random access indexing and
thus fast retrieval of information. Moreover, ACGP separately
maintains its global heuristics from its local heuristics. The
minimal size for the tables is completely dependent on the size
of the function set F, the terminal set T, and the arity of each
function, and it is shown in Eq. 1 for the first order heuristics.
The constant 1 is added to account for the global heuristics,
which at the root are only maintained at the zero order. In the
absence of any initial heuristics, such probability tables are
initialized to uniform probabilities for every building block.
The heuristics can also be initialized to non-uniform
probabilities using CGP’s input interface. When ACGP
analyzes the heuristics, it observes the frequencies which
building blocks appear in the fittest population members and
adjusts the probabilities of those building blocks on each
iteration.

 ((∑

)) (| | | |) (1)

The discovered heuristics in ACGP are used in crossover,
mutation, and a new operator, regrow. Each operator needs to
access the tables in order to apply as according to the
heuristics. Regrow is an initialization operator used by ACGP
after each iteration. In GP, generations build on top of each
other. However, the search also converges into better
subspaces. When ACGP extracts its heuristics at each iteration,
it prefers to reinitialize the population according to the new
heuristics [5]. This reinitialization tends to remove bloat,
produce more compact trees from the same subspace in which
the search converges, yet reduce premature convergence.

The newly discovered heuristics effectively change the
space being search by GP – the space density changes, or rather
the search space becomes non-uniform. In a way, the heuristics
become shortcuts in the space, allowing adjustments in how
genotype and phenotype relate to become more properly
aligned to solve the problem in the most efficient way. As
proven before, this results in much more efficient search while
examining smaller number of trees [5,7]. This is often a
significant improvement for a modest overhead storage and
processing cost.

Recently, ACGP expanded the heuristic analysis and
methods to consider second order heuristics, as shown in
Figure 2(b). This has also been shown to lead to more efficient
search [1]. However, this also leads to more overhead both in
time and space. The main reason is that the number of
heuristics grows substantially over the first order. Equation 2
shows how many second order heuristics are needed. In this
case, the global heuristics are truly second order and thus we
multiply the other factor rather than add. Moreover, function
arity is in the exponent to account for all children
combinations.

 ∑ (| | | |)

 (2)

III. COST-BENEFIT ANALYSIS

Any improvement to any method should always be
considered in the context of the cost of the method, or
otherwise the overall performance may suffer. The benefit of
using heuristics in GP is to speed up evolution, by utilizing the
discovered heuristics which again more close align genotype
and phenotype, or adjust the search to only the optimal
subspace. As a secondary benefit, the discovered heuristics
themselves may be invaluable information in general or for a
new search, even if the cost is of obtaining them is initially
high.

The cost of heuristics is the space and time requirements
needed to carry out the search in the modified-density space.
With efficient implementation of the closed search [4], this cost
is made up of:

1. Allocating all needed counters and tables – this is done
in the setup stage.

2. Time to process the better trees, analyzing and
counting various strictures, and to adjust the heuristics,
at each iteration – this happens infrequently, at each
iteration only.

3. Time for the operators of mutation, crossover, and
regrow to access the heuristics – this is performed
frequently (mutation and crossover are frequent;
regrow is only at iteration time).

First, we perform a detailed cost-benefit analysis up for first
and second order heuristics because a complete implementation
exists. In this case, we show the benefits and then combine
with cost. Because no ACGP implementation beyond the
second order exists, when moving to higher order analysis we
extrapolate on the benefits and measure the cost by simulations.

A. Experimental Methodology

To perform this analysis, we use the function shown in Eq.
3. This controlled problem exhibits strong second order
structure but less obvious first order structure – this will allow
us to access the benefits of processing proper heuristics yet
observe the difference in improvements attributed to different
levels of heuristics. The function and terminal sets are
sufficient yet not minimal as we do not want to assume that we
know that much about the problem at hand. Accordingly, the
function set is set to F={*, /,

+
, -} and the terminal set is set to

T={x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}.

All experiments are repeated independently ten times, and
averages are reported. Unless otherwise noted, population size
was set to 500, generations to 500, and iteration to 20
generations.

 () () () (3)

B. Benefit of First and Second OrderHeuristics

Among the possible first order building blocks, ten local
heuristics are highly desirable, as seen by analyzing Eq. 3. This
set of these desired heuristics is shown below – subscript
indicates child number:

{ } { } { } { }
{ } { } { } { } { } { }

ACGP runs as GP for 20 generations (1 iteration). At that
time, it considers the best trees in the population, analyzing
them and counting all found first order structures (we use literal
counting; however, ACGP also allows other counting methods
which disregard unexpressed subtrees and counts more
frequently used subtrees with higher weights). Then, ACGP
adjust the initially uniform heuristics according to the observed
frequencies, reinitializes the population using the modified
heuristics (using regrow), and continues its generations with
crossover and mutation through the next iteration. However,
mutation and crossover are now non-uniform as according to
the heuristics. After several of these analysis intervals, the
building blocks that contribute most to the best solutions begin
to emerge in the heuristics set, and the evolution picks up.

The benefits of using such first-order heuristics over a
traditional GP run can be seen in Figure 3, which shows the
fitness of the best individual averaged over 30 independent
runs. However, the first order heuristics, even the most
desirable as shown above, clearly do not capture the true
structure present in the problem. For example, the first order
heuristics state that ‘*’ can apply to ‘x’ as its first argument and
‘x’ as its second argument but are incapable of expressing the
fact that this should be simultaneous as seen in Eq. 3. In
particular, using the above first order heuristics, the following
thirteen second order heuristics are all equally likely:

{ } { } { } { }
{ } { } { }
{ } { } { }
{ } { } { }

However, only the diagonal heuristics are truly relevant and
contribute new information to solving Eq. 3. The others will
not contribute to a fit solution. ACGP running with only first
order heuristics can process the above heuristics implicitly, but
when derived from first order heuristics all nine of the second
order heuristics will be equally likely.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

1
9

0
2

0
0

2
1

0
2

2
0

2
3

0
2

4
0

2
5

0
2

6
0

2
7

0
2

8
0

2
9

0
3

0
0

3
1

0
3

2
0

3
3

0
3

4
0

3
5

0
3

6
0

3
7

0
3

8
0

3
9

0
4

0
0

4
1

0
4

2
0

4
3

0
4

4
0

4
5

0
4

6
0

4
7

0
4

8
0

4
9

0
5

0
0

Fi
tn

e
ss

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2d OH

1st OH

Base

Figure 3 Comparison of Base, first order and second order

heuristics in ACGP

When ACGP is executed with second order heuristics, it is
capable of differentiating among the above nine heuristics, and
thus it should be capable of using this to an advantage. Figure 3
shows that it indeed does so, clearly outperforming not only
standard GP but also ACGP running with first order heuristics.

C. Cost of First and Second Order Heuristics in ACGP

Since all of the functions in Eq. 3 are binary functions, the
total number of possible first order heuristics is computed using
an adjusted form of Eq. 1, shown in Eq. 4. Given the problems
settings as above, this yields 162 possible first order heuristics.

 (| |) (| | | |) (4)

Among the 162 possible building blocks, only six local first
order heuristics are highly desirable, as seen before, plus the
global heuristic placing ‘+’ in the root.

Using second order structures, the total number of
heuristics can be computed using an adjusted form of Eq. 2 as
presented in Eq. 5.

 | | (| | | |) (5)

Given the problem settings, this yields 2592 second order
heuristics. Among those, only three local heuristics, as
indicated above, are useful, plus some global placing {+ + *}
and {+ * +} in the root.

The sizes hardly seem prohibitive, but to assess all cost we
must take all cost components into account – the cost involves
not only the space but also accessing and updating the
heuristics. Rather than directly computing the cost and then
comparing it against the benefits of Figure 3, we re-plot Figure
3 on time rather than generation scale – this way all possible
cost is taken into account. The re-plotted results are shown in
Figure 4, extended to 180 seconds which was the longest run
among the three cases. The observed dips are due to regrowing
the population at interval points – however the dips are
minimal due to averaging over independent runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

Fi
tn

e
ss

Seconds

Bowl3 Learning Curve
population = 500, generations = 500

2d OH

1st OH

Base

Figure 4 Comparison of Base, 1st Order and 2d Order Heuristics

for Equation 3 180 seconds, 500 population

As can be seen, ACGP is able to produce the best solution
while learning second order heuristics – and even the first order
heuristics are a substantial improvement over the standard GP.
In fact, both kinds of heuristics provide significant advantage to
GP even if cost is taken into account. Second order processing
outperforms first order – on the benefit side this was expected
since Equation 4 exhibits strong second order structure, but
showing that the benefit is sustained when taking cost into
account is welcome information. Additional analysis presented
in [1] shows that the advantage persists even when the second
order structure is not so dominating in the problem being
solved.

D. Benefits of Higher Order Heuristics

ACGP implementation for higher order structures does not
exists, and therefore empirical support for the benefits of
extracting and using higher order heuristics cannot be
performed. However, from the benefit analysis for first and
second order heuristics it is easy to speculate that if the
problem exhibits higher order structures, processing such
higher order heuristics should be beneficial.

E. Cost of Higher Order Heuristics

The engine that drives the performance gains of ACGP is
the heuristics extracted from the problem and processed in the
operators. However, the number of higher order heuristics
grows very substantially, and it poses storage and processing
challenges to access and adjust the heuristics. This section
analyses this issue.

The cost of higher order heuristics is that of processing, and
modifying the tables needed to maintain the heuristics. The first
question is how big are those tables? Equation 6 shows the
formula to compute the size of the tables for third order
heuristics, and Table 1 shows the actual sizes for the problem
illustrated in this paper for order 1-6. As seen from that table,
the sizes become prohibitive around third or fourth order. Let
us illustrate it in detail.

 ∑ ((∑ (| | | |)

) | |)

 (6)

Table 1 GROWTH OF THE NUMBER OF HEURISTICS FOR

DIFFERENT LEVELS

1st OH 1.62 x 102

2nd OH 2.59 x 103

3rd OH 1.37 x 107

4th OH 3.76 x 1014

5th OH 2.48 x 1029

6th OH 1.62 x 1059

The tables in ACGP are generated during the setup, and
subsequently are randomly indexed to access the information
as needed in mutation, crossover, regrow, and are linearly
accessed to adjust the heuristics at each iteration time. Random
indexing is cheap as long as the language supports indexes of
needed size and the total size does not exceed possible process
space. The process space can be quite substantially on some
64-bit machines yet the real challenge comes from the limited
RAM available on a computer system even if the system is
capable of addressing a larger address space.

The empirical analysis was performed using a Dell Latitude
6400 with Intel Duo core P 8700 2.53 GHz processor with 4
GB RAM [3.48 GB effective] under Windows XP Pro SP3.
This system was chosen for convenience, but it does not allow
large processes and therefore we turned the simulation to gain
the needed data.

Because ACGP does not provide implementation for
heuristics above second order, we instead took the second order
case and enlarged it at controlled intervals, generating artificial
cases with controllably increasing number of heuristics – to

increase table sizes. These cases are listed in Table 2. The case
1x is the previous second order case. The case 10x refers to the
same problem with an artificially increased function and
terminal set that was produced by duplicating the original set of
labels in order to increase the number of heuristics by one order
of magnitude, etc. However, because the 100,000x could not
complete on our system, we used the 10,000x plus case giving
a three-fold increase over the previous case. With these
artificial cases, we will be able to simulate table sizes for up to
third order heuristics but not up to fourth.

Table 2 EXPERIMENT COMPLEXITY LEVELS

Level
Functions

(binary)
Terminals Combinations

1x 4 14 2,592

10x 10 26 25,920

100x 28 40 258,944

1000x 62 82 2,571,264

10,000x 120 208 25,820,160
10,000x plus 188 267 77,841,400

First, we measure separately the time requirements for
various operations of ACGP:

 Setup time, which includes table allocations and
transformations of the internal structures

 Fitness time, which is time to evaluate the trees
which should be independent of the heuristics
involved

 Operator time: mutation and crossover, which will
require access to heuristics

 Regrow time: reinitializing the population at each
interval which requires access to heuristics

 Weight time: analyzing best trees, computing
frequency tables, and recomputing the heuristics,
all at iteration time

 Processor time: total time

 Other run attributes such as average tree size and
depth, RAM and Virtual Memory (VM) used.

Table 3 RUN STATISTICS FOR Table 2

Seconds 1x 10x 100x 1,000x 10,000x 10,000x plus

Setup time 0.27 1.00 3.03 8.67 26.23 28.00

Fitness time 38.33 17.60 17.17 18.10 20.53 27.00

Operator time 5.73 3.00 2.93 3.50 5.13 8.00

Regrow time 0.00 0.00 0.00 1.00 7.93 16.00

Weight time 0.28 0.20 0.72 3.46 19.20 49.92

Processor time 00:37.0 00:34.1 00:31.1 01:02.5 03:01.5 07:04.2

Size 123.87 44.87 39.73 54.47 57.13 51.00

Depth 11.40 6.93 5.47 6.57 7.40 9.00

RAM (in K) 7,400 8,136 12,612 71,500 639,160 1,866,716

VM (in K) 14,756 14,756 22,948 137,644 673,844 1,871,772

The data is compiled in Table 3. The Setup time grows with
increasing number of heuristics, as expected, as larger tables
need to be allocated and initialized. Fitness time is not affected
by increasing heuristics and is rather related to average tree
sizes. However, this would not be true with increasing

mismatch between RAM and total memory required as seen
later.

Operator time is stable across the cases – random access to
heuristics is not affected by table sizes. Regrow time increases,
which is in contrast to Operator time. Because both Regrow
and Operator access the same heuristics, this must be caused by
memory allocation and deallocation during regrowing the trees
– this could likely be alleviated by carefully reusing the same
memory. Weight time grows most substantially with growing
number of heuristics – this involves traversing some trees and
then updating all heuristics.

0.00 0.00 0.00
1.00

7.93

0.28 0.20
0.72

3.46

19.20

-

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1x 10x 100x 1,000x 10,000x

Se
co

n
d

s

Complexity Level

ACGP Operation Time Growth

Regrow Time

Weight Time

Figure 5 ACGP Regrow and Weight times from Table 3

Regrow and Weight time, the fastest growing times from
Table 3, are better illustrated in Figure 5. Weight time is the
most rapidly growing measure – it includes tree traversals and
also processing of all heuristic tables, and with larger cases we
observed memory paging coming into play causing the
increases. This issue is further tested next.

Table 4 REGROW AND OPERATOR TIMES

(UP TO 11 SIMULTANEOUS PROCESSES)

Regrow Operator

1 8.000 5.000

2 10.500 6.000

3 12.000 5.667

4 15.750 6.500

5 14.400 9.200

6 12.333 28.667

7 10.429 116.571

8 10.750 302.625

9 11.444 371.667

10 10.100 454.900

11 767.455 26880.909

The above timing does not take into account the RAM
bottleneck – even if computer system supports large process
space and programming language supports large indexes, when
some data is flushed out of RAM to VM this will affect the
overall performance. To simulate this scenario, we selected the
10,000x case, which requires close to 700k space (see Table 3),
and we force a number of such processes to run concurrently,

competing for RAM memory and thus causing page faults. The
more page faults per timed unit, the larger the impact. In this
experiment, we measure Regrow and Operator time, which
both need to access the heuristics. The results are presented in
Table 4 for the 1-11 concurrent processes, and illustrated
graphically in Figure 6 using log scale.

1.000

10.000

100.000

1000.000

10000.000

1 2 3 4 5 6 7 8 9 10 11

Se
co

n
d

s
(l

o
ga

ri
th

m
ic

 s
ca

le
)

Concurrent Processes

Regrow
Operator

Figure 6 Regrow and Operator time for 1-11 concurrent

executions of the 10,000x case, on a logarithmic scale

The growth of these times captures some of the process
contention issues as the complexity grows. The Regrow time is
fairly constant through 10 executions, due to kernel policy with
would hardly ever interrupt during a single regrow – however,
the kernel started interrupting when running 11 processes due
to more demand on the system, and the time starts growing
rapidly. The Operator time grows slowly when a few processes
compete for RAM, but again for the same reasons shots up for
the 11 processes.

Table 5 summarizes the average total processing time for
the runs, showing the same slow growth for 1-10 competing
processes, coming to an explosion when the demand exceed the
system resources or kernel policies for the 11 simultaneous
processes.

Table 5 TOTAL EXECUTION TIMES

(11 SIMULTANEOUS PROCESSES)

Total time

1 217.000

2 267.000

3 336.000

4 457.250

5 489.000

6 653.500

7 785.714

8 892.625

9 1,156.222

10 1,307.444

11 97,127.273

IV. CONCLUSIONS AND FUTURE WORK

The results indicate that with larger heuristics, and a
growing mismatch between available RAM and total process
space, the cost of processing the heuristics will grow too fast to

possibly be offset by any of the possible benefits. From the
simulations and computation, it seems that third order
heuristics, in the current format and method, will be as far as
ACGP could go and even that would require dedicated
computer and may become prohibitive with larger number of
labels or especially with ternary, or higher arity function.

When a problem exhibits some structure, a well designed
mechanism can exploit this structure to improve search
efficiency. When speaking of search efficiency, one has to
weigh the costs of space and time versus the benefits. We have
shown that for problems with strong structure, ACGP running
with first or second order heuristics can exploit the structure
and lead to improvements both on generation scale as well as
on time scale (thus taking cost into account).

On the other hand, we have also shown that the cost of
processing the heuristics would become prohibitive beyond
second or third level, depending on the number of labels and on
function arities. This cost is mostly due to the mismatch
between available RAM and the total process space available
on a given computer system. One obvious solution to allow the
benefits while keeping cost low would be to process the
heuristics using the current explicit mechanisms only up to the
second order, and apply some machine learning techniques
beyond second order to process only the most plausible
heuristics. One way this could be accomplished with minimum
implementation overhead would be to use so called growing
language – in addition to the initial function and terminals
labels present in a given environment, include also artificial
labels referring to individual best performing first and second
order heuristics – in essence allowing the heuristics to combine
to form deeper order heuristics. The space requirements for this
would be minimal as such new labels would be treated as

terminals, which from Eq. 4 and 5 affect the space required
very modestly for first order and second order ACGP.

REFERENCES

[1] Janikow, Cezary Z. and Aleshunas, John J., Second Order Heuristics
with ACGP. unpublished.

[2] Banzhaf, W., Nordin, P., Keller, R., Francone, F., Genetic Programming
– An Introduction, Morgan Kaufmann, 1998.

[3] Langdon, W., Poli, R., Foundations of Genetic Programming, Springer,
2002

[4] Janikow, Cezary Z. A Methodology for Processing Problem Constraints
in Genetic Programming, Computers and Mathematics with
Applications. 32(8):97-113, 1996

[5] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic
Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo, Rick L.,
editors. Genetic Programming Theory and Practice (II). Springer, New
York, NY, 2005, 191-206

[6] Janikow, Cezary Z., and Mann, Christopher J. CGP Visits the Santa Fe
Trail – Effects of Heuristics on GP. GECCO’05, June 25-29, 2005

[7] Janikow, Cezary Z. Evolving Problem Heuristics with On-line ACGP,
GECCO’07, July 7–11, 2007

[8] Looks, Moshe, Competent Program Evolution, Sever Institute of
Washington University, December 2006

[9] McKay, Robert I., Hoai, Nguyen X., Whigham, Peter A., Shan, Yin,
O’Neill, Michael, Grammar-based Genetic Programming: a survey,
Genetic Programming and Evolvable Machines, Springer Science +
Business Media, September 2010

[10] Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein, A Survey of
Probabilistic Model Building Genetic Programming, The Artificial Life
and Adaptive Robotics Laboratory, School of Information Technology
and Electrical Engineering, University of New South Wales, Australia,
2005

