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Abstract—Constrained Genetic Programming (CGP) is a 

method of searching the Genetic Programming search space 

non-uniformly, giving preferences to certain subspaces 

according to some heuristics. Adaptable CGP (ACGP) is a 

method for discovery of the heuristics. CGP and ACGP have 

previously demonstrated their capabilities using first-order 

heuristics: parent-child probabilities. Recently, the same 

advantage has been shown for second-order heuristics: 

parent-children probabilities. A natural question to ask is 

whether we can benefit from extending ACGP with deeper-

order heuristics. This paper attempts to answer this question 

by performing cost-benefit analysis while simulating the 

higher-order heuristics environment. We show that this 

method cannot be extended beyond the current second or 

possibly third-order heuristics without a new method to deal 

with the sheer number of such deeper-order heuristics.  

Keywords-Genetic Programming, Adaptable Constrained 

Genetic Programming, Building Block Hypothesis, Heuristic. 

I.  BACKGROUND 

Genetic Programming (GP) is an evolutionary computation 
method merging concepts from computer science and biology. 
It has been shown to provide robust solutions for problems 
such as evolving computer programs, designing logic circuits, 
discovering mathematical equations, and solving other 
optimization and combinatorial problems where other solutions 
are not practical or unknown [2].  

Genetic Programming represents a population of candidate 
solutions as trees, lists or graphs, but the dominant 
representation, and the one this paper concentrates on, is the 
tree representation [2]. These trees are composed of elements 
from a predetermined set of functions and terminals, called 
here labels. A given function can label any node whose number 
of subtrees equals the function arity. Terminal labels, such as 
constants or variables from the problem environment, label the 
leaves. 

The search space is the space of all (up to some size limit) 
trees that can be labeled with the provided labels. Somewhere 
in the space, we should find the actual solution to the problem 
at hand or otherwise GP will not be capable of ever finding the 
solution. The quality of a single solution-tree, and therefore its 
“proximity” to the sought solution, is the tree’s evaluation 
through a provided black-box fitness function.  

After the initial sampling in the GP population, new 
solutions are evolved using genetic operators such as crossover 
and mutation, while guided by selection based on fitness 

evaluations. In crossover, randomly chosen sub-trees are 
exchanged between two parents. In mutation, a randomly 
chosen sub-tree is regrown. 

 

Figure 1GP solution represented as a tree for the algebraic 

formula x*x+y*y+z*z 

One critical issue with GP design is the choice of the labels. 
The labels, along with limitations on explored tree sizes, 
determine the search space for GP (while population, selection 
and operators determine the means of searching the space). If 
the label set is not sufficient, the desired solution does not exist 
in the search space and therefore GP will never find it. This is 
often referred to as the sufficiency principle [2]. To avoid this 
problem, the label set is often greatly enlarged. Unfortunately, 
this increases the search space and generally reduces the GP 
effectiveness [2][4]. To answer this challenge, a number of 
methods have been proposed that ultimately prune, or reduce 
the effective search space, such as STGP, CFG-based GP, etc. 
[2].  

Constrained GP (CGP) is another such method. It allows 
certain constraints on the formation of labeled trees – 
constraints on a parent and one of its children at a time [4] 
(CGP also supports restrictions based on types, along with 
polymorphic functions, but this paper does not use these 
extended capabilities). The constraints are processed in a 
closed search space by operators with minimum overhead: 
closed search space refers to generating only valid parents from 
valid children [4]. The constraints in CGP, called heuristics, 
can be strong, that is conditions that must be satisfied, or be 
expressed weakly as probabilities. Such local probabilities 
effectively change the density or uniformity of the GP search 
space. CGP has been proven very successful on a number of 



standard GP problems especially when using the strong 
constraints [4,6].  

CGP requires the user to know the heuristics – CGP only 
provides means of adjusting the search space given the 
heuristics. Adaptable CGP (ACGP) was developed to automate 
the process of discovery of such useful heuristics, and the 
method was also shown to efficiently learn and apply the 
heuristics [5,7]. Recently, the method has been extended to 
more complex heuristics. The stronger heuristics, and the 
method, have been validated as providing efficient speed up to 
evolution in cases where second-order structures exist in the 
problem at hand [1].  

ACGP contrasts from other GP improvement techniques 
such as Estimation of Distribution Algorithms (EDA) for GP 
[10], applying grammar-based methodologies to GP [9] and 
semantic optimization methods [8]. Those methods attempt to 
build probabilities on labeling specific tree nodes rather than 
tree-position-independent probabilities as ACGP allows. In 
addition, ACGP works within a standard GP (extends lilgp). 

In ACGP, with the growing complexity of the heuristics, 
come costs associated with the processing and storage of these 
heuristics. Second-order heuristics do not pose significant 
overhead; however, higher order heuristics do. The paper 
analyzes the cost-benefit relationship for the heuristics. 
Because no implementation exists beyond the second order, the 
benefits of higher-order heuristics are speculated, and the cost 
is simulated.  

In this paper, we first introduce the basic principles of 
ACGP, its heuristics and their discovery method, followed by 
cost analysis. Then, we perform complete cost-benefit analysis 
for first and second order heuristics, tracing benefits and 
combing them with cost. Finally, we discuss the benefits of 
higher order heuristics, and measure their cost by using the 
current implementation to simulate cases with higher demands. 
We close by suggesting some ways to alleviate the cost 
problem. 

II. HEURISTICS AND ACGP 

A. Heuristics in ACGP 

Heuristics in Artificial Intelligence are considered to be 
chunks of information, or rules-of thumb, that can lead to some 
improvements in knowledge or in processing. In ACGP, 
heuristics are probabilities attached to certain labeled 
structures. First order heuristics are probabilities of certain 
parent-one-child structures, such as the probability that the 
binary function ‘+’ will have ‘+’ as its left argument, as 
illustrated in Figure 2(a). Second order heuristics are 
probabilities of certain parent-all-children structures, such as 
the probability that the binary function ‘*’ will apply 
simultaneously to ‘y’, as illustrated in Figure 2(b). One may 
revert this terminology to zero order heuristics, that is just label 
probabilities (these are less useful except for the root node), 
and extend to higher order heuristics where a node is 
considered with its children and their children, etc.  

The heuristics are very useful in guiding the GP search. For 
example, if the structure as labeled in Figure 2(b) has high 
probability, that is it is a useful structure (useful building 

block), and some tree is being mutated with ‘*’ to label a node, 
then the two children of this node would have higher chance of 
being labeled ‘y’ and ‘y’ as according to this heuristic.  The 
same would happen in crossover – if the first order heuristics 
from Figure 2(a) has high probability, the tree in Figure 2 is 
chosen for crossover and the root’s left subtree is chosen as 
crossover node, CGP would favor bringing subtrees starting 
with ‘+’ from the other parent.  

 

Figure 2a) First order and b) second order heuristics on trees 

In EDA methods, some probabilities are maintained for 
specific positions in the tree [10]. In ACGP, there are two kinds 
of heuristics instead. Global heuristics are position-specific as 
they provide information starting from the root node. Local 
heuristics and position-independent and they can be applied in 
any position in the tree.  

B. Discovery of Heuristics in ACGP 

In ACGP, the method for discovery of heuristics is 
straightforward – the heuristics are discovered by analyzing the 
best performing trees. This process does not take place after 
every generation as it has been shown that more time is needed 
for the emergence of such structures [5]. Instead, this happens 
after a number of generations, called an iteration.  

The building block hypothesis asserts that evolutionary 
processes work by combining relatively fit, short schema to 
form complete solutions [3]. The problem with this assertion is 
that most problems are not decomposable and it is often 
difficult to determine the fitness of a particular building block 
let alone determine its contribution to the individual’s fitness. 
ACGP uses the assumption that building blocks, or structures, 
that occur more frequently in the fittest population members 
contribute to the fitness of those solutions and are therefore fit 
building blocks.  

In addition to using multi-generation iterations, ACGP also 
adjusts its heuristics from the observed frequencies, rather than 
greedily using the frequencies as its heuristics – empirical 
results show that heuristics applied too greedily can lead to 
premature convergence into a search subspace which is 
incapable of representing the sought solution [5]. This is due to 
the fact that GP, given its large label set, searches a space of 
many redundant representations and early heuristics tend to 
conflict between these representations. Once the search begins 



to converge to a specific solution and thus into specific 
representation, the heuristics are more reliable as a set. 

C. Representation and Cost of the Heuristics in ACGP 

ACGP computes its frequencies and represents its heuristics 
in tables, eventually translated into so called mutation tables. 
Table representation allows for random access indexing and 
thus fast retrieval of information. Moreover, ACGP separately 
maintains its global heuristics from its local heuristics. The 
minimal size for the tables is completely dependent on the size 
of the function set F, the terminal set T, and the arity of each 
function, and it is shown in Eq. 1 for the first order heuristics. 
The constant 1 is added to account for the global heuristics, 
which at the root are only maintained at the zero order. In the 
absence of any initial heuristics, such probability tables are 
initialized to uniform probabilities for every building block. 
The heuristics can also be initialized to non-uniform 
probabilities using CGP’s input interface. When ACGP 
analyzes the heuristics, it observes the frequencies which 
building blocks appear in the fittest population members and 
adjusts the probabilities of those building blocks on each 
iteration.  
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 )   )  (| |  | |) (1) 

The discovered heuristics in ACGP are used in crossover, 
mutation, and a new operator, regrow. Each operator needs to 
access the tables in order to apply as according to the 
heuristics. Regrow is an initialization operator used by ACGP 
after each iteration. In GP, generations build on top of each 
other. However, the search also converges into better 
subspaces. When ACGP extracts its heuristics at each iteration, 
it prefers to reinitialize the population according to the new 
heuristics [5]. This reinitialization tends to remove bloat, 
produce more compact trees from the same subspace in which 
the search converges, yet reduce premature convergence. 

The newly discovered heuristics effectively change the 
space being search by GP – the space density changes, or rather 
the search space becomes non-uniform. In a way, the heuristics 
become shortcuts in the space, allowing adjustments in how 
genotype and phenotype relate to become more properly 
aligned to solve the problem in the most efficient way. As 
proven before, this results in much more efficient search while 
examining smaller number of trees [5,7]. This is often a 
significant improvement for a modest overhead storage and 
processing cost. 

Recently, ACGP expanded the heuristic analysis and 
methods to consider second order heuristics, as shown in 
Figure 2(b). This has also been shown to lead to more efficient 
search [1]. However, this also leads to more overhead both in 
time and space. The main reason is that the number of 
heuristics grows substantially over the first order. Equation 2 
shows how many second order heuristics are needed. In this 
case, the global heuristics are truly second order and thus we 
multiply the other factor rather than add. Moreover, function 
arity is in the exponent to account for all children 
combinations. 

   ∑ (| |  | |)       
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III. COST-BENEFIT ANALYSIS 

Any improvement to any method should always be 
considered in the context of the cost of the method, or 
otherwise the overall performance may suffer. The benefit of 
using heuristics in GP is to speed up evolution, by utilizing the 
discovered heuristics which again more close align genotype 
and phenotype, or adjust the search to only the optimal 
subspace. As a secondary benefit, the discovered heuristics 
themselves may be invaluable information in general or for a 
new search, even if the cost is of obtaining them is initially 
high.  

The cost of heuristics is the space and time requirements 
needed to carry out the search in the modified-density space. 
With efficient implementation of the closed search [4], this cost 
is made up of: 

1. Allocating all needed counters and tables – this is done 
in the setup stage. 

2. Time to process the better trees, analyzing and 
counting various strictures, and to adjust the heuristics, 
at each iteration – this happens infrequently, at each 
iteration only.  

3. Time for the operators of mutation, crossover, and 
regrow to access the heuristics – this is performed 
frequently (mutation and crossover are frequent; 
regrow is only at iteration time). 

First, we perform a detailed cost-benefit analysis up for first 
and second order heuristics because a complete implementation 
exists. In this case, we show the benefits and then combine 
with cost. Because no ACGP implementation beyond the 
second order exists, when moving to higher order analysis we 
extrapolate on the benefits and measure the cost by simulations.  

A. Experimental Methodology 

To perform this analysis, we use the function shown in Eq. 
3. This controlled problem exhibits strong second order 
structure but less obvious first order structure – this will allow 
us to access the benefits of processing proper heuristics yet 
observe the difference in improvements attributed to different 
levels of heuristics. The function and terminal sets are 
sufficient yet not minimal as we do not want to assume that we 
know that much about the problem at hand. Accordingly, the 
function set is set to F={*, /, 

+
, -} and the terminal set is set to 

T={x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}.  

All experiments are repeated independently ten times, and 
averages are reported. Unless otherwise noted, population size 
was set to 500, generations to 500, and iteration to 20 
generations. 

 (   )  (   )  (   ) (3) 

B. Benefit of First and Second OrderHeuristics 

Among the possible first order building blocks, ten local 
heuristics are highly desirable, as seen by analyzing Eq. 3. This 
set of these desired heuristics is shown below – subscript 
indicates child number: 

{   } {   } {   } {   }  
{   } {   } {   } {   } {   } {   } 



ACGP runs as GP for 20 generations (1 iteration). At that 
time, it considers the best trees in the population, analyzing 
them and counting all found first order structures (we use literal 
counting; however, ACGP also allows other counting methods 
which disregard unexpressed subtrees and counts more 
frequently used subtrees with higher weights). Then, ACGP 
adjust the initially uniform heuristics according to the observed 
frequencies, reinitializes the population using the modified 
heuristics (using regrow), and continues its generations with 
crossover and mutation through the next iteration. However, 
mutation and crossover are now non-uniform as according to 
the heuristics. After several of these analysis intervals, the 
building blocks that contribute most to the best solutions begin 
to emerge in the heuristics set, and the evolution picks up. 

The benefits of using such first-order heuristics over a 
traditional GP run can be seen in Figure 3, which shows the 
fitness of the best individual averaged over 30 independent 
runs. However, the first order heuristics, even the most 
desirable as shown above, clearly do not capture the true 
structure present in the problem. For example, the first order 
heuristics state that ‘*’ can apply to ‘x’ as its first argument and 
‘x’ as its second argument but are incapable of expressing the 
fact that this should be simultaneous as seen in Eq. 3. In 
particular, using the above first order heuristics, the following 
thirteen second order heuristics are all equally likely: 

{   } {   } {   } {   }  
{    } {    } {    }  
{    } {    } {    }  
{    } {    } {    } 

However, only the diagonal heuristics are truly relevant and 
contribute new information to solving Eq. 3. The others will 
not contribute to a fit solution. ACGP running with only first 
order heuristics can process the above heuristics implicitly, but 
when derived from first order heuristics all nine of the second 
order heuristics will be equally likely.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

1
9

0
2

0
0

2
1

0
2

2
0

2
3

0
2

4
0

2
5

0
2

6
0

2
7

0
2

8
0

2
9

0
3

0
0

3
1

0
3

2
0

3
3

0
3

4
0

3
5

0
3

6
0

3
7

0
3

8
0

3
9

0
4

0
0

4
1

0
4

2
0

4
3

0
4

4
0

4
5

0
4

6
0

4
7

0
4

8
0

4
9

0
5

0
0

Fi
tn

e
ss

Generation

Bowl3  Learning Curve
population = 500, generations = 500

2d OH

1st OH

Base

 

Figure 3 Comparison of Base, first order and second order 

heuristics in ACGP 

When ACGP is executed with second order heuristics, it is 
capable of differentiating among the above nine heuristics, and 
thus it should be capable of using this to an advantage. Figure 3 
shows that it indeed does so, clearly outperforming not only 
standard GP but also ACGP running with first order heuristics.  

C. Cost of First and Second Order Heuristics in ACGP 

Since all of the functions in Eq. 3 are binary functions, the 
total number of possible first order heuristics is computed using 
an adjusted form of Eq. 1, shown in Eq. 4. Given the problems 
settings as above, this yields 162 possible first order heuristics.  

 (  | |   )  (| |  | |) (4) 
 

Among the 162 possible building blocks, only six local first 
order heuristics are highly desirable, as seen before, plus the 
global heuristic placing ‘+’ in the root.  

Using second order structures, the total number of 
heuristics can be computed using an adjusted form of Eq. 2 as 
presented in Eq. 5.  

   | |  (| |  | |)  (5) 

Given the problem settings, this yields 2592 second order 
heuristics. Among those, only three local heuristics, as 
indicated above, are useful, plus some global placing {+ + *} 
and {+ * +} in the root. 

The sizes hardly seem prohibitive, but to assess all cost we 
must take all cost components into account – the cost involves 
not only the space but also accessing and updating the 
heuristics. Rather than directly computing the cost and then 
comparing it against the benefits of Figure 3, we re-plot Figure 
3 on time rather than generation scale – this way all possible 
cost is taken into account. The re-plotted results are shown in 
Figure 4, extended to 180 seconds which was the longest run 
among the three cases. The observed dips are due to regrowing 
the population at interval points – however the dips are 
minimal due to averaging over independent runs.  
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Figure 4 Comparison of Base, 1st Order and 2d Order Heuristics 

for Equation 3 180 seconds, 500 population 

As can be seen, ACGP is able to produce the best solution 
while learning second order heuristics – and even the first order 
heuristics are a substantial improvement over the standard GP. 
In fact, both kinds of heuristics provide significant advantage to 
GP even if cost is taken into account. Second order processing 
outperforms first order – on the benefit side this was expected 
since Equation 4 exhibits strong second order structure, but 
showing that the benefit is sustained when taking cost into 
account is welcome information. Additional analysis presented 
in [1] shows that the advantage persists even when the second 
order structure is not so dominating in the problem being 
solved.  



D. Benefits of Higher Order Heuristics 

ACGP implementation for higher order structures does not 
exists, and therefore empirical support for the benefits of 
extracting and using higher order heuristics cannot be 
performed. However, from the benefit analysis for first and 
second order heuristics it is easy to speculate that if the 
problem exhibits higher order structures, processing such 
higher order heuristics should be beneficial. 

E. Cost of Higher Order Heuristics 

The engine that drives the performance gains of ACGP is 
the heuristics extracted from the problem and processed in the 
operators. However, the number of higher order heuristics 
grows very substantially, and it poses storage and processing 
challenges to access and adjust the heuristics. This section 
analyses this issue.  

The cost of higher order heuristics is that of processing, and 
modifying the tables needed to maintain the heuristics. The first 
question is how big are those tables? Equation 6 shows the 
formula to compute the size of the tables for third order 
heuristics, and Table 1 shows the actual sizes for the problem 
illustrated in this paper for order 1-6. As seen from that table, 
the sizes become prohibitive around third or fourth order. Let 
us illustrate it in detail.  

   ∑ ((∑ (| |  | |)       
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Table 1 GROWTH OF THE NUMBER OF HEURISTICS FOR 

DIFFERENT LEVELS 

1st OH 1.62 x 102

2nd OH 2.59 x 103

3rd OH 1.37 x 107

4th OH 3.76 x 1014

5th OH 2.48 x 1029

6th OH 1.62 x 1059
 

The tables in ACGP are generated during the setup, and 
subsequently are randomly indexed to access the information 
as needed in mutation, crossover, regrow, and are linearly 
accessed to adjust the heuristics at each iteration time. Random 
indexing is cheap as long as the language supports indexes of 
needed size and the total size does not exceed possible process 
space. The process space can be quite substantially on some 
64-bit machines yet the real challenge comes from the limited 
RAM available on a computer system even if the system is 
capable of addressing a larger address space. 

The empirical analysis was performed using a Dell Latitude 
6400 with Intel Duo core P 8700 2.53 GHz processor with 4 
GB RAM [3.48 GB effective] under Windows XP Pro SP3. 
This system was chosen for convenience, but it does not allow 
large processes and therefore we turned the simulation to gain 
the needed data. 

Because ACGP does not provide implementation for 
heuristics above second order, we instead took the second order 
case and enlarged it at controlled intervals, generating artificial 
cases with controllably increasing number of heuristics – to 

increase table sizes. These cases are listed in Table 2. The case 
1x is the previous second order case. The case 10x refers to the 
same problem with an artificially increased function and 
terminal set that was produced by duplicating the original set of 
labels in order to increase the number of heuristics by one order 
of magnitude, etc. However, because the 100,000x could not 
complete on our system, we used the 10,000x plus case giving 
a three-fold increase over the previous case. With these 
artificial cases, we will be able to simulate table sizes for up to 
third order heuristics but not up to fourth.  

Table 2 EXPERIMENT COMPLEXITY LEVELS 

Level
Functions 

(binary)
Terminals Combinations

1x 4 14 2,592

10x 10 26 25,920

100x 28 40 258,944

1000x 62 82 2,571,264

10,000x 120 208 25,820,160
10,000x plus 188 267 77,841,400  

First, we measure separately the time requirements for 
various operations of ACGP:  

 Setup time, which includes table allocations and 
transformations of the internal structures 

 Fitness time, which is time to evaluate the trees 
which should be independent of the heuristics 
involved 

 Operator time: mutation and crossover, which will 
require access to heuristics 

 Regrow time: reinitializing the population at each 
interval which requires access to heuristics 

 Weight time: analyzing best trees, computing 
frequency tables, and recomputing the heuristics, 
all at iteration time 

 Processor time: total time 

 Other run attributes such as average tree size and 
depth, RAM and Virtual Memory (VM) used. 

Table 3 RUN STATISTICS FOR Table 2 

Seconds 1x 10x 100x 1,000x 10,000x 10,000x plus

Setup time 0.27          1.00          3.03          8.67          26.23         28.00         

Fitness time 38.33         17.60         17.17         18.10         20.53         27.00         

Operator time 5.73          3.00          2.93          3.50          5.13          8.00          

Regrow time 0.00          0.00          0.00          1.00          7.93          16.00         

Weight time 0.28          0.20          0.72          3.46          19.20         49.92         

Processor time 00:37.0 00:34.1 00:31.1 01:02.5 03:01.5 07:04.2

Size 123.87       44.87         39.73         54.47         57.13         51.00         

Depth 11.40         6.93          5.47          6.57          7.40          9.00          

RAM  (in K) 7,400 8,136 12,612 71,500 639,160 1,866,716

VM  (in K) 14,756 14,756 22,948 137,644 673,844 1,871,772  

The data is compiled in Table 3. The Setup time grows with 
increasing number of heuristics, as expected, as larger tables 
need to be allocated and initialized. Fitness time is not affected 
by increasing heuristics and is rather related to average tree 
sizes. However, this would not be true with increasing 



mismatch between RAM and total memory required as seen 
later.  

Operator time is stable across the cases – random access to 
heuristics is not affected by table sizes. Regrow time increases, 
which is in contrast to Operator time. Because both Regrow 
and Operator access the same heuristics, this must be caused by 
memory allocation and deallocation during regrowing the trees 
– this could likely be alleviated by carefully reusing the same 
memory. Weight time grows most substantially with growing 
number of heuristics – this involves traversing some trees and 
then updating all heuristics.  
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Figure 5 ACGP Regrow and Weight times from Table 3 

Regrow and Weight time, the fastest growing times from 
Table 3, are better illustrated in Figure 5. Weight time is the 
most rapidly growing measure – it includes tree traversals and 
also processing of all heuristic tables, and with larger cases we 
observed memory paging coming into play causing the 
increases. This issue is further tested next. 

Table 4 REGROW AND OPERATOR TIMES  

(UP TO 11 SIMULTANEOUS PROCESSES) 

Regrow Operator

1 8.000 5.000

2 10.500 6.000

3 12.000 5.667

4 15.750 6.500

5 14.400 9.200

6 12.333 28.667

7 10.429 116.571

8 10.750 302.625

9 11.444 371.667

10 10.100 454.900

11 767.455 26880.909  

The above timing does not take into account the RAM 
bottleneck – even if computer system supports large process 
space and programming language supports large indexes, when 
some data is flushed out of RAM to VM this will affect the 
overall performance. To simulate this scenario, we selected the 
10,000x case, which requires close to 700k space (see Table 3), 
and we force a number of such processes to run concurrently, 

competing for RAM memory and thus causing page faults. The 
more page faults per timed unit, the larger the impact. In this 
experiment, we measure Regrow and Operator time, which 
both need to access the heuristics.  The results are presented in 
Table 4 for the 1-11 concurrent processes, and illustrated 
graphically in Figure 6 using log scale. 
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Figure 6 Regrow and Operator time for 1-11 concurrent 

executions of the 10,000x case, on a logarithmic scale 

The growth of these times captures some of the process 
contention issues as the complexity grows. The Regrow time is 
fairly constant through 10 executions, due to kernel policy with 
would hardly ever interrupt during a single regrow – however, 
the kernel started interrupting when running 11 processes due 
to more demand on the system, and the time starts growing 
rapidly. The Operator time grows slowly when a few processes 
compete for RAM, but again for the same reasons shots up for 
the 11 processes.  

Table 5 summarizes the average total processing time for 
the runs, showing the same slow growth for 1-10 competing 
processes, coming to an explosion when the demand exceed the 
system resources or kernel policies for the 11 simultaneous 
processes.  

Table 5 TOTAL EXECUTION TIMES  

(11 SIMULTANEOUS PROCESSES) 

Total time

1 217.000

2 267.000

3 336.000

4 457.250

5 489.000

6 653.500

7 785.714

8 892.625

9 1,156.222

10 1,307.444

11 97,127.273  

IV. CONCLUSIONS AND FUTURE WORK 

The results indicate that with larger heuristics, and a 
growing mismatch between available RAM and total process 
space, the cost of processing the heuristics will grow too fast to 



possibly be offset by any of the possible benefits. From the 
simulations and computation, it seems that third order 
heuristics, in the current format and method, will be as far as 
ACGP could go and even that would require dedicated 
computer and may become prohibitive with larger number of 
labels or especially with ternary, or higher  arity function.  

When a problem exhibits some structure, a well designed 
mechanism can exploit this structure to improve search 
efficiency. When speaking of search efficiency, one has to 
weigh the costs of space and time versus the benefits. We have 
shown that for problems with strong structure, ACGP running 
with first or second order heuristics can exploit the structure 
and lead to improvements both on generation scale as well as 
on time scale (thus taking cost into account). 

On the other hand, we have also shown that the cost of 
processing the heuristics would become prohibitive beyond 
second or third level, depending on the number of labels and on 
function arities. This cost is mostly due to the mismatch 
between available RAM and the total process space available 
on a given computer system. One obvious solution to allow the 
benefits while keeping cost low would be to process the 
heuristics using the current explicit mechanisms only up to the 
second order, and apply some machine learning techniques 
beyond second order to process only the most plausible 
heuristics. One way this could be accomplished with minimum 
implementation overhead would be to use so called growing 
language – in addition to the initial function and terminals 
labels present in a given environment, include also artificial 
labels referring to individual best performing first and second 
order heuristics – in essence allowing the heuristics to combine 
to form deeper order heuristics. The space requirements for this 
would be minimal as such new labels would be treated as 

terminals, which from Eq. 4 and 5 affect the space required 
very modestly for first order and second order ACGP. 
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