

PVM Toolkit for Windows

Jan Kwiatkowski1,2, Piotr Hojnor2

2 Computer Science Department,
Wrocław University of Technology

 Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

phone: (+48)(71) 3203602
fax: (+48)(71) 3211018

e-mail: {kwiatkowski,hojnor}@ci.pwr.wroc.pl

Cezary Janikow
1 Math and Computer Science Department

University of Missouri – St. Louis
8001 Natural Bridge Rd,

St. Louis, MO 63121, USA
phone: (314)5166352

fax: (314)5165400
e-mail: janikow@arch.umsl.edu

Abstract: In the past years, computing has been
moving from the sequential world to the parallel
one, from centralized organization to decentral-
ized. This paper presents a short description of a
PVM (Parallel Virtual Machine) toolkit, devel-
oped and implemented for the Windows operat-
ing system. It is intended to provide a graphical
interface for PVM administration and process
monitoring. The toolkit will assist the user in the
management of the virtual environment, and it
can be used for PVM application tuning. The
toolkit consists of a remote shell daemon
(RSHD), remote shell client (RSH), remote copy
client (RCP), and an administrative tool similar
to XPVM, which serves administrative and
monitoring functions.

Keywords: distributed environments, PVM envi-
ronment, distributed processing, administrative
tools

1 Introduction

In the past years, computing has been moving
from the sequential world to the parallel one,
from a centralized organization to decentralized.
There is also a large diversity of paral-
lel/distributed computer organizations, including
those made possible by high-speed networks.
Thus, distributed parallel programming using
networked computers became one of the most
attractive and cheap ways to increase the com-
puting power [1,4]. In particular, the message-
passing paradigm became very popular. PVM
(Parallel Virtual Machine) is a software envi-

ronment, which emulates a distributed-memory
multiprocessor in a heterogeneous networked
environment. Reasons for the wide acceptance
and popularity of PVM for scientific computa-
tions include availability of heterogeneous net-
works and simple programming interfaces. Cur-
rently, PVM is available for a variety of hard-
ware and software platforms, from personal
computers to supercomputers. Generally, PVM
consists of a daemon and PVM libraries, provid-
ing fundamental environment functionalities [5].
Additionally, there are a number of auxiliary
tools, such as graphical visualization of PVM
programs, administrative and other tools, which
extend the basic PVM functionally. Unfortu-
nately, such tools are not available for Windows.
Therefore, a user must use a text console for all
PVM related functions. This text-based interface
is hard to use. Additionally, only two program-
ming languages, Visual C++ and Visual Fortran,
can be used for programming under PVM for
Windows. These are the main motivations for the
work presented in this paper. The main objective
is to design and implement a PVM Toolkit for
Windows, to provide a graphical user interface
for PVM administration and process monitoring,
and to support multiple languages. The toolkit
consists of a remote shell daemon (RSHD), re-
mote shell client (RSH), remote copy client
(RCP), and an administrative tool similar to
XPVM, which serves administrative and moni-
toring functions [7]. This paper is organized as
follow. Section 2 briefly describes the design.
Section 3 presents basic functionalities of
RSHD, RSH and RPC. Section 4 presents the

main functionalities of the administrative tool.
Finally, section 5 summarizes this work and
discusses future extensions planned.

2 Design overview

As mentioned, except for the classical PVM text
console, there are no administrative tools sup-
porting the PVM implementation for Windows
(WINPVM). Moreover, only two programming
languages: Visual C++ and Visual Fortran, can
currently be used for programming under PVM
for Windows. In this work, we extend the PVM
implementation for Windows [2,3]. First, we
provide a graphical monitoring console similar
to XPVM, to be used for environment manage-
ment and to assist in tracing and tuning perform-
ance of specific applications. Second, we provide
additional useful tools, and extend the standard
functionalities of other tools:

• A new RSHD server, allowing remote
process invocation to UNIX computers
(feature not available in the standard
PVM for Windows).

• RSH shell, allowing adding new hosts to
execute in PVM (there are some com-
mercial version, but very costly).

• RCP client, allowing distributing the ap-
plication code.

 All pvm functions placed in the PVM libraries
communicate with the user utilizing the printf
family of functions. It causes some problems
with programming under WINAPI. So, to allow
easier interfacing in the graphical mode, a new
pvm_print function, presented below, is provided
in the PVM libraries (module newcrt.c).
 This function checks if the invoked PVM li-
brary function is to be used in the graphic mode.
If so, an internal Windows Message signals to

the output window to display the incoming mes-
sages in the graphic mode. This allows very
effective use of the PVM libraries in the
graphical Windows environment - the libraries
do not have to be modified.
void pvm_printf(char *fmt, ...)
{ va_list va;
 if (fmt)
 { va_start(va, fmt);
 Vsprintf(commBuff, fmt, va);
 Va_end(va); } /* if */
 #ifdef WINMAIN
 if (applHandle)
 SendMessage(applHandle,
 PRINTFMESSAGE, commBuff, 0);
 else #endif
 printf("%s", commBuff); }

 The above tools allow us to design and im-
plement the graphical console. Similarly to
XPVM, to capture tracing information at run-
time, the user only needs to compile his program
using PVM libraries (some additional changes in
the standard tracer were needed). Data captured
during execution is immediately presenting (and
animated) by the new graphical console. All
tracing information can be also stored in external
files for later use such as for post-mortem analy-
sis. Additionally, the user programs can be writ-
ten in Borland C++ and Borland Delphi in addi-
tion to Visual C++ and Fortran.

3 Remote Shell Daemon RSHD

RSHD daemon acts as a server for remote shell
(RSH) and remote file copy (RCP). RSHD is a
service available on the UNIX operating system.
Therefore, we need to provide RSHD for Win-
dows in order for PVM to communicate with
UNIX. The new RSHD uses the same algorithm

Fig.1. The main window of the Remote Shell Daemon

as RSHD for UNIX BSD [6]. Additionally, it is
equipped with a graphical user interface, which
allows changes to the execution environment
without having to restart it. The new daemon
serves some useful functions such as: allowing
debugging, verifying the. .rhost file, checking
secure connection conditions, manual and remote
testing of Windows architecture (95/98, NT,
2000), redirecting stdout and stderr,
choosing the localization of “temp files”
($TEMP or current directory). The RSHD
graphical interface is presented in Figure 1.
 The main window consists of two parts. The
top of window is a menu with the following op-
tions: File|Close – close the application,
Stop/Start - close or start the tracing process (the
state of RSHD is stored to allow restarting from
the last configuration), Settings – enable switch-
ing on/off the above mentioned functionalities,
and Help - get the information about the avail-
able options.
 The bottom of the main window is the central
widget where the results of the selected options
are displayed. This display can be, at any time,
copied to the Windows clipboard. After
minimizing, the program is automatically saved
as an icon tray.
 The RSH is a client for RSHD, it is used
for executing remote commands on a given
host. RSH services include a graphical con-
sole, which is divided into four parts. The
first part, Results, is used for showing the
results of execution; the second, Aliases, is

used for defining the most commonly used
operations; the third, History, is used for
storing the operations; and the last provides
the command line. An operation is selected
by a click, and subsequently executed by the
Run button.
 The graphical console of the RCP service can
work in two modes. First, when the architecture
of the chosen host is recognized by the RSH
service, the RCP main window is divided into
two parts, one for the server and one for the re-
mote host (this allows text copying using the
drag and drop method). Second, if the architec-
ture is not recognized, the RCP window provides
the standard command line.

4 The PVM Graphical Console for
Windows

The PVM graphical console assists the PVM
user in management of the virtual environment,
and in monitoring the execution of the applica-
tion. The main window of this console contains
three parts, as presented in Figure 2. The top part
is a toolbar containing iconic shortcuts for the
most often used user commands. The user can
customize these. In the illustration, we have:
Quit, Halt, RunRTSK and Help. Quit and Halt
are equivalent to quit and halt from the PVM
text console, RunRTSK starts the tools presented
in the previous section, and Help presents infor-
mation about the available options. The com-

Fig.2. The main window of the administrative PVM console tool

mands are selected with the mouse.
 The middle part is the Page Control line con-
taining Tabs Sheets for different visualizations of
the virtual machine. This simplifies management
of the virtual machine because it allows the user
to concentrate on the most desired display fea-
tures. The available Tab Sheets are: Commands,
Tasks, Watch, Space-Time and Hosts. The de-
fault Tab Sheet is Commands. The remaining
part of the main window is the central widget
where the execution traces are displayed, as ac-
cording to the Tab Sheets. This display can be
further subdivided.
 This tool can work in two different modes: as

a classical text console, or as the graphical user
interface for monitoring the virtual machine.
Figure 2 illustrates the Tab Sheet Commands,
which provides the functionality of the classical

text console, however, with improved interface.
The display widget is divided here into two
parts: the result panel, which presents the results
of the recently executed commands in a standard
way, and command line, where any pvm com-
mand can be entered. The results displayed in the
result panel are not lost but instead they are
buffered and can be viewed with the scrollbar.
They can also be copied in the clipboard. The
command line can be scrolled using the keyboard
arrow keys to retrieve command history. Help is
also available under the F1 key. This help pro-
vides the available commands when the com-
mand line is empty, or the description of the last

written command otherwise. The list of com-
mands is also always available under the short-
key ctrl + F1.

Fig.3. The Hosts Tab Sheet window

Fig.4. The Tasks Tab Sheet window

4.1. Administrative functions of the
PVM console

The most often used management functions are
commands used for building and reorganizing
the virtual machine (add, delete and conf). These
commands are grouped under the Tab Sheet
Hosts, visible in Figure 3. When this Tab Sheet
is selected, the display widget displays the cur-
rent configuration of the virtual machine. The
add and delete commands are available through
two new buttons. A new host can be added either
by writing its name in the hosts table, or by
choosing it from the list of the recently used
hosts, available under the button add. A host can
be removed from the virtual machine by select-
ing it in the table and pressing the delete button.
 Comparing with the information presented by
the standard conf command, a new column is
added providing the usage. As for other PVM
consoles, the virtual machine can also be config-
ured using a host file (the name of the file is a
parameter of the console start-up), and automatic
command realization is also supported through
the .pvmrc file. When clicking the mouse on
the marked host name, the list of running tasks
on this host will appear (as illustrated in Fig. 5).

 The other Tab Sheets are used for tracing run-
ning tasks, as well as for visualizing the state of
the virtual machine. To demonstrate these, let us
consider the following simple example, using a
modified version of the standard hello world
program. The master process generates four
slave tasks and waits for answers from them. The
slave processes verify that they are spawn, ap-
pend themselves to the group hellohellogroup,
synchronize themselves at a barrier, and send
confirmation messages to the parent.
 The following figures illustrate the execution

of above example.
 The Task Tab Sheet, presented in Figure 4,
visualizes some general information about all
running tasks on the virtual machine at a given
moment. Information on a specific task is identi-
fied by its tid – task identificator. The informa-
tion is updated without delay (using signals from
the tracer process). It is also possible to start a
new pvm process directly from the console
(spawn), to stop a process (kill), and to reboot
the machine (remove all of the pvm tasks – re-
set). When clicking the Spawn button, a new
window appears. Using this window, the user
can select a process from the process list (direc-
tory $PVM_ROOT\bin\$PVM_ARCH), define
the host architecture for the process, specify
other standard spawn options, and provide argu-
ments for the process.

4.2. Monitoring functions of the PVM
console

A chronological list of all pvm functions utilized
by the given task (name, time, parameters) is
very useful for debugging. Such a list is pre-
sented in a separate window and is updated con-
tinually (Figure 5). The window can be opened

for any task, and it appears after selecting this
task from Task Tab Sheet.
 Figure 6 shows the Space-Time Tab Sheet. It
illustrates a window displaying the current state
of each task. This window also enables tracing
messages sent between the tasks, as visualized
on the screen. The lifespan of each task is repre-
sented as a vertical line. The color of a line and
the corresponding icons indicate the status of the
task. The meanings of the icons are summarized
in the table 1. The arrows between tasks indicate
the parent-child relationship between tasks.

Fig.5. List of functions for a given task window.

TABLE 1

pvm function Icon Function
pvm_joingrou

p
attach the process to a

group
pvm_recv waiting for data

Pvm_barrier waiting on a barrier
Pvm_output showing of a message

 Green color of a task indicates that a task is
running. Blue color indicates that a pvm function
is executing (for example: waiting for data,
standing on a barrier, etc.). Black lines connect-
ing two tasks indicate a message being between

them (pvm_send) – it is directed from the sender
to the receiver. Each task icon in the figure has
some associated parameters, such as the name of
the barrier that the process is waiting on, the
number of bytes sent, etc. The presented graph

can be configured for including only specific
information (e.g., communication). The number
of pixels per second can control the animation
speed. It is also possible to choose the tasks to be
included in the graph (all, just running, last N
tasks, etc.).
 Figure 6 presents the discussed example in
operation. It can be seen that the main process is
waiting for data from the spawn slave processes.
The slave processes enter the PVM group, are
synchronized at the barrier, make some computa-
tions, and send the results back to the parent
process. It can be observed that even though the
slave tasks are identical, their execution time is

different depending on the host architecture.
Additionally, the window is also equipped with a
handy calculator, which can be used by the user.
 Figure 7 shows the Watch Tab Sheet (Network
View under XPVM), which illustrates loads on

Fig.6. The Space-Time Tab Sheet window

individual hosts and communication in the net-
work. Each host is represented as an icon with its
name, architecture, and the number of executing
pvm tasks. The architecture of the network can
also be chosen (seen at top-left window corner)
from the following: Linear array, Ring, and Star.
The host color indicates if the host is occupied or
not (yellow – PVM system task, green – user
tasks, blue – no tasks). Clicking on the host icon
makes the list of the running tasks available.
Additionally, the history of individual pvm func-
tions, executed by each task, can also be dis-
played. The box on connection line symbolizes
data sent through the network (it is moving from
the sender to the receiver). The number inside of
the box indicates the size of the message.

6 Conclusions

This is an ongoing project. At present, a proto-
type implementation has been completed. Ex-
periments conducted using this prototype indi-
cate that the tool is very useful for the manage-
ment of the PVM environment under the Win-
dows system, and for performance tuning of
PVM applications. In addition, the user can ob-
serve temporal graphs indicating the state of
each host, the architecture of the network, traffic
on the network. Moreover, the toolkit allows two

additional languages to be used. The individual
tools presented here can be used independently.

References

1. Cosnard M., Trystan D, Parallel Algorithms

and Architectures, International Thomson
Publishing Company, London 1995.

2. Fischer M., Port of PVM to Windows, a port
using Myrinet, and a port using Scalable Co-
herent Interface, available at
http://www.markus-fischer.de/projects.htm

3. Fischer M., Announcement of PVM for the
WIN32-bit platform, available at www.Pader

 born.de/StaffWeb/getin/ntport.htm
4. Foster I., Designing and Building Parallel

Programs, Addison-Wesley Pub., 1995 (also
available at
http://www.mcs.anl.gov/dbpp/text/book.html
).

5. PVM: A Users’ Guide and Tutorial for Net-
worked Parallel Computing

6. NetBSD Manual Pages, available at
http://www.tac.eu.org/cgi-bin/man-cgi

7. XPVM: A Graphical Console and Monitor
for PVM, available at
http://www.netlib.org/utk/icl/xpvm/xpvm.ht
ml

Fig.7. The Watch Tab Sheet window

Fig.7. The Watch Tab Sheet window

