Chung F. Wong received his B.Sc. (Hons.) degree from the Chinese University of Hong Kong and his Ph.D. degree from the University of Chicago. He did his postdoctoral work at the University of Houston. He held academic and industrial positions at the University of Houston, Mount Sinai School of Medicine, SUGEN, Inc., University of California-San Diego, and the Howard Hughes Medical Institute before joining the faculty of UM-St. Louis in 2004.

Chung Wong Laboratory Homepage

Research Interests
Our research involves the development and applications of computational methods to study biomolecular structure, dynamics, and function and to aid the design of bioactive compounds. For details please go to the link above to the laboratory homepage.

Selected Publications

″Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-​Solvent Electrostatic Calculations,″ R. Ye,X. Nie, C. F. Wong, X. Gong, Y. A. Wang, T. Heine and B. Zhou, Baojing, Z. Phys. Chem. 2016, 230, 681

″Incorporating binding kinetics in drug design, ″ C. F. Wong, In: Silico Drug Discovery and Design, C. N. Cavasotto, Ed, 2016, 483-503

″Brownian Dynamics Simulation of Peptides with the University of Houston Brownian Dynamics (UHBD) Program,″ T. Shen and C. F. Wong, Methods in Molecular Biology, 2015, 1268, 75.

″Exploring host-guest complexation mechanisms by a molecular dynamics/quantum mechanics/continuum solvent model approach,″ R. Ye, X.  Nie, Y. Zhou, C. F. Wong, X. Gong, W. Jiang, W. Tang, Y. A. Wang,T. Heine and B. Zhou, Chem. Phys. Lett. 2016, 648, 170

″Inexpensive Method for Selecting Receptor Structures for Virtual Screening,″ Z. Huang and C. F. Wong, J. Chem. Inf. & Modeling 2016, 56, 21.

″Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases,″ C. F. Wong, Protein Science 2016, 25, 192

″Flexible receptor docking for drug discovery,″ C. F. Wong, Expert Opinion on Drug Discovery, 2015, In press.

"A New Class of Salicylic Acid Derivatives for Inhibiting YopH of  Yersinia pestis", M. P. Paudyal, L. Wu, Z.-Y. Zhang, C. D. Spilling and C. F. Wong, Bioorg. Med. Chem. 2014, 22, 6781.

"Molecular simulation of drug-binding kinetics″, C. F. Wong, Molecular Simulation, 2014, 40, 889.

"Drug design for Protein Kinases and Phosphatases: Flexible-Receptor Docking, Binding Affinity and Specificity, and Drug-Binding Kinetics" C. F. Wong and S. Bairy, Curr. Pharm. Design 2013, 19, 4739. 

"SRmapper: a fast and sensitive genome-hashing alignment tool' P. M. Gontarz, J. Berger and C. F. Wong, Bioinformatics 2013, 29, 316.

"A case study of scoring and rescoring in peptide docking," Z. Huang and C. F. Wong, Methods Mol. Biol. 2012, 819 (Computational Drug Discovery and Design), 269.

"Simulations reveals two major docking pathways between hexapeptide GDYMNM and the catalytic domain of the insulin receptor protein kynase," Z. Huang and C. F. Wong, Proteins: Structure, Function, and Bioinformatics 2012, 79, 2275.

"Influence of Kinetics of Drug Binding on EGFR Signaling: A Comparative Study of Three EGFR Signaling Pathway Models”, S. Bairy and C. F. Wong, Proteins: Structure, Function, Bioinformatics, 2011, 79, 2491.

Z. Huang and C. F. Wong, “Incorporating Protein Flexibility in Molecular Docking by Molecular Dynamics: Applications to Protein Kinase and Phosphatase Systems” in “Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine”, T.F. George, D. Jelski, R.R. Letfullin, G. Zhang (Eds.), World Scientific, Singapore, London (2011) pp. 219-250.