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Abstract
A static cointegration model of US M1 forecastsdrey two decades ahead, conditional on
known non-M1 variables. Data is adjusted for npsréng induced by regulatory accounting
"sweeps". K’'th-quarter-ahead forecasts from thisleh have smaller RMSE than those from a
univariate (differenced) ADL model for k >5. Thedel employs money and income scaled per
household. There are three theoretical reasorgdoiog so. Scaling is necessary (a priori) to
avoid inducing instability, miss-timing and triviaelf-cointegration”. The approach can be
rearranged to model the price-level. Potentialdag-run inflation forecasting (conditioned on
other variables) is explored.
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0. Introduction

This paper shows a simple long-run model of U$Haforecasts remarkably well,
even twenty-five years ahead. The initial foreilogsexercise is severe, estimating a static levels
model over quarterly data 1959-81.3 and then usiaege estimates (without updating) to
forecast through 2008, taking income and inter@stsras known during the forecast pefioit
1981.3 there is a sharp reversal in trend velofitiowed a year later by a large and sustained
shift in trend real money. Terminating the estiorasample in 1981.3 ensures the model must
forecast the large shift in trend, however onegmefo measure the shift. The long-run
cointegrating model also does remarkably well iorr run forecasting, beating differenced
univariate (ADL) models at time horizons of six cfeas or moré.

The model is distinguished from other approachesaling money and real GDP on a
per household basis. Section 1 discusses theetiwareasons for scaling in this manner, and
also presents a bit of historical background. i88@ discusses the M1 data and the adjustments
needed after 1993 for a measure which includes frexdly checkable explicitly insured
deposits. Section 3 shows the results of the longiorecasting exercise, comparing the model
scaled on a per household basis to the corresppnaim-scaled model.

The remaining sections focus on scaled (per haldemodels. Section 4 examines
integration and cointegration tests, and forecagiopmance based upon estimation methods
other than Engle-Granger OLS. Section 5 presédm-sun forecasting performance,

comparing the static per household model to diffeeel univariate models in recursive

! These are “conditional pseudo forecasts”, sindg thre dependent variable is treated as unknown.
2 Lag truncation for the time-series model is rekeated at each step, hence | refer to these faeaasoming
from a series of time series models rather tham facsingle model.



forecasting from one through twenty quarters ahesettion 6 introduces obstacles to and
prospects for inverting the model for price-levetlanflation modeling.

This paper adopts the view that the most fundaahésutk is to prove the usefulness of
the long run equilibrium relationship. There iag history of failures in theory-based
forecasting and of apparent breakdown of money tsptftem Goldfeld (1976) to Hess Jones
and Porter (1998). Given this history, resultsesefent upon tests with restrictive assumptions
can reasonably be taken as weak evidence. Ifinds this paper’s results for the static
cointegrating model convincing, an obvious nexp $&to move to short-run error-correction
forms. But such models nest the long-run equilitorrelationship within a short-run model. In
these dynamic models the a-theoretic time seriaamyics usually provide most of the fit and
forecasting ability, even at moderately long honzo And even if there is agreement upon the
long-run relationship, there will be multiple pdssi approaches for embedding this relationship
within an error-correction form. Establishing steengths of the long-run equilibrium model is
a fundamental first step towards dynamic modeling.

Hence this paper avoids formal testing as mugtoasible, and instead follows two paths
most models fear to tread. First, the static egrdating model is used to forecast over long
horizons, where “long” is well over five years. c8ad, in shorter-run forecasts the static model
is compared to a dynamic pure time series modeke lthe question is whether there are short

horizons at which the static model clearly domirdte

% This provides an informal definition of the longar The transition from short-run to long-runtie forecast
horizon at which the static cointegrating modelibego dominate a pure-time series model.



1. Theimportance of scaling

The model presented below is simple, modifyingdéad approaches only in scaling
money and GDP on a per household basis. This wgggested by Arthur Okun in a conference
discussion of Goldfeld’s (1973) exploration of scaariables in money regressions. In his
exploration of the possible benefits of scalingd®eld had rejected a role for population in
modeling total mone¥. But in his follow-up paper Goldfeld (1976) dedideis tests were not
valid and that theory implied a model employing mp@and income measured per-capita. Yet
the issue of scaling and Okun’s suggestion forisgan a per household basis largely

disappears from the literature after the 1970’s.

1.1 Theoretical considerations for stability

Even in a world scaled up as a sum of represestatients, aggregate GDP growth is a
function of both increases in individual incomesl amcreases in population. In itself,
population growth merely replicates or re-scalesgbonomy proportionately, so (barring
externalities) this replication elasticity mustdree. If the individual income elasticity does not
also equal one, then a GDP elasticity will varypapulation growth and individual income
growth vary in their relative importance. So ifputation and individual income elasticities are
unequal and their growth rates vary then we knguraly aggregate model must be unstable.
Greene (1999) shows that for US data this instghilill be large enough to matter if the
individual income elasticity is less than 0.75.sHeé&s below imply a per household GDP

elasticity well under this value.

* Meltzer (1963) also took an empirical approacthmissue, rejecting regressions of money petaapi income
or wealth per capita because tHews smaller than for non-scaled variables, andimthere was more sub-
period variation in coefficients for the per-capitadels. In addition, he found that the “populatédasticity” was
not equal to one. These were static regressiolev@ts, but of course he estimated variances asgustationary
data.



1.2 Timing

If we grant the need for some sort of populaticaliag, then there is a second
consideration. There is a lag between changdwibitth rate and changes in the number of
managers of income and money. Even when lookitangtrun trends, there will typically be
about twenty years from a change in birth-drivepuation growth to the date at which this
impacts the number of adults earning income andagiag money holdings. So even if we are
interested only in long-run relationships, somagrakin to Okun’s scaling suggestion is
essential for the timing of empirical data to cepend to theoretical notionsGreene (2010)
describes a number of alternative suggestionga da the number of households is unavailable.
These include using residential construction dagayg measures of the adult population or the
adult population less the number of married coygestegrating up from birth, death and

immigration rates.

1.3 An economically meaningless common trend

A third reason to use population or householdisgah estimating monetary models is
that households will be cointegrated with housefi¢tat population with population), but such
"self cointegration” is not very interesting. Déng the log of households “h”, the log of real
money per capita “rmh”, and the log of real GDP gagita “yh”, then total real money is rmh
+h, log real GDP is yh +h, and the standard aggeegadel treats rmh +h as a function of yh
+h. As changes in rmh and yh become smaller velati changes in h, the model comes closer

to treating households as a function of households.

® |deally one would want a measure of independemnemic units, and it may be possible to marginiatigrove
upon Okun’s suggestion.



For the USA from 1959 to 2008 the number of hoakih(not logged) increased by a
factor of about 2.28 and RGDP per household inectay a factor of about 2.11. So more than
half the change in RGDP is due to mere re-scalliigewise, total real M1 increased by a factor
of 2.76, but almost all of this is driven by replion, with real money per household only 1.21
times as large in 2008 as in 1959. Hence regmrgs$stal money on GDP (rmh +h upon yh +h) is
more than halfway to modeling h as a function dféating “self-cointegration” as economically

meaningful®

2. M1, regulatory shadow-sweep accounting, and the long-run forecasting exercise

Starting in 1994 the Board of Governors essegtatided the requirement that banks
report all depositor holdings of freely checkahtea@unts as such, allowing some to be reported
as money market deposits with no reserve requirem#me limited discussion in the economics
literature has referred to these as “retail-swedmst'this is a misleading termUnlike true
sweep accounts set up for the benefit of depogiteosy the balance “swept” into these shadow
MMDA accounts does not pay money market interettiécdepositor. The liquidity of the retail
depositor is not affected. The retail checkingoaet depositor writes unlimited checks
regardless of the existence or non-existence ashladow account. And the size and date of any
"sweep transfer” is not reported to the deposi®o.more transparent terms for this device are

“shadow sweep”, or “regulatory sweep”. This islisea (de-)regulatory move in the same spirit

® Data on the number of US households equals thédeunf occupied housing units, as published by.tBe
Census. Historical data is available as “Table HHHouseholds by Type: 1940 to Present” in the mexstnt
Families and Living Arrangements/Historical Datatgm of the US Census Bureau website,
http://www.census.gov/population/www/popdata.htiihis source data is annual. In the empiricalisestbelow
these annual figures are interpolated to quarestynates.

" In the banking industry literature the devicedmgtimes referred to as a "reserve sweep".



as regulatory accounting standards which allow-taffance sheet” activities which nonetheless
affect the profitability of and risk borne by adimcial institution.

An oddity of the new regulatory accounting rulesswhat they were proposed by an
individual bank (O'Sullivan( 1998, p88)). The bargkcommittee of the US Senate and the
Board of Governors treated this as a proprietangwation. The Board further reasoned that if
the innovating bank had been required to reporvtiheme of shadow sweeps then this might
have revealed details of the particular bank’svéats to competitors (Melzer and Kohn in
FMOC Minutes (Sept. 1995, p33)). Protecting thegie innovation was more important than
maintaining the reporting and measurement of freegckable deposits.

Thus the Board of Governors decided not to reqeiperting of deposits in standard
retail checking accounts which are treated for pses of regulatory reserve-requirement
accounting as money market deposits. Instead tlaedBoroceeded to publish fictitious M1 data,
with a growing portion of traditional checking bat®s hidden in the shadow sweeps. As of this
date shadow-sweep accounting is estimated to @ddynhalf of freely checkable deposits, so
reported M1 is now about two-thirds of its trueusafrom the depositor (and thus behavioral)

perspective.

2.1 Adjusting the Fictitious Data

Once enough time passed to protect innovator yj\the Board of Governors began to
publish estimates of the volume of deposits helilasut not reported in the official data. To
extend the M1 data beyond 1993, | take this datastimated shadow sweeps and add it to M1
as reported by the Board. These adjusted figueeaearly identical to those developed by

Cynamon, Dutkowsky, and Jones (2006), periodiagigated and published as series M1RS at



their website (http://www.sweepmeasures.com). tBese are estimates. Banks are still not
required to report the volume of freely checkaldpasits hidden in the shadow MMDA
accounts.

Anderson and Rasche (2001) report evidence teadbounting-sweep estimates are
likely accurate. But unlike the remainder of meaduM1, the monthly sweep data is so smooth
as to contain no apparent seasonal components) iEaecurate on average, either there is no
seasonal pattern or the estimates miss this déthis may affect dynamic models employing
M1 data adjusted for shadow sweeps, since seasomgonents may shift sometime after 1993.
But except for univariate (pure time series) modeisd as benchmarks, the focus here will be

upon long-run static models.

2.2 The characteristics of aggregate M1, veloaitg money per household

Figure 1 displays the trend characteristics ofjemhreal M1. After 1982.3 there is a
large increase in the trend slope. This changeeitd comes a year after the shift in trend
velocity, marked with the vertical line. Before8I03 there is some variation in trend, money
grows at a steady rate 1959.1-73.1, and then @scéirbit until the turning point in 1982.3. But
these changes are dwarfed by the shift to a relgtconstant increasing trend at 1982.3.

Figure 2 displays velocity in the sense of therat real GDP to real M1. Velocity rises
along a nearly linear path 1959.1-81.3. Thenrded ceases to be nearly linear. If one
compares endpoints of the earlier to the laterope(1981 versus 2008) there is little change in
velocity, for a cumulatively flat trend. But alotige way and for periods of as long as three
years there are both positive and negative treSdswhen comparing pre- and post-1981 time

periods, velocity differs in both trend and vagatin trend.



Figure 2 also displays real M1 per household.s Tdnigely mirrors the behavior of
velocity, with two nuances. First, the turningdior trend money per household comes a bit
later (1982.3) than for velocity (1981.3). Thisrting point for money per household is the same
as for aggregate real M1 in Figure 1. Second,reef881.3 money per household does not
follow a linear trend as closely as does velocityparticular, the trend of money per household
shifts in 1971.3, before the larger shift in trettd 982.3. So there is a bit more pre-1982
variation in the trends of real M1 per househoklhtthere is variation in trend velocity. But as

with trend money, there is a large shift in tremedbeity and real M1 per household after 1982.

3. Long-run static model forecasting

This section compares the long-run forecastinfppmiance of two long-run models
estimated via Engle-Granger static levels, onet@riin standard aggregate terms and the other
with money and RGDP scaled per household. Theffirecasting exercise estimates through
1981.3, while the second estimates the models ghr@987. In the above section we saw that
whether viewed through the lens of aggregate moredgcity, or money per household the
1959.1-81.3 data excludes a large shift in treddnce | characterize long-run forecasts based
upon estimation within this period as “most amhigd The terminal estimation date for the
second forecasting exercise is chosen to inclugeyears of data after the shift in trend money

(1959-87), and so is less ambitious.

3.1 A most ambitious exercise: Forecasts througB8zased upon estimation 1959-1981
Here the simple static cointegration (levels) miedee estimated through the date of

peak velocity 1959.1-1981.3. The coefficientrasties are then used to forecast the remaining



sample through 2008.4, taking the interest rateiacwime at actual values (conditional
forecasts). The two models differ only in whettie¥ measure of money and income is scaled.
The first model regresses (logged) aggregate rdalpbn a constant (rm), real (chain weighted)
GDP (y), and an interest rate (r), the 10-year Juea(constant maturity) yield. Nominal money
is deflated using the chain-weighted GDP deflaftine second model employs the same
variables, but money and GDP are scaled per holgséfoh and yh). The coefficient estimates
for the aggregate model and the per-household navddlespectively)

M = 4.103 +0.333y -0.132r and (1)

rimh= 7.748 +0.204yh -0.356r )
and forecasts in Figures 3 and 4 use these estmatees.

In Figure 3 the forecasts of the aggregate modéboation 1 have been converted to per
household terms by subtracting the log of househokbr the first couple years after the turning
point, the aggregate model appears to track thersal/of trend money (per household). But by
the late 1980's the forecast values from the agdesmodel are consistently drifting farther
away from actual values. The aggregate modelimited success in the sense that it does not
predict a continuation of the pre-1981 downwarddreBut it is unable to track the large
increase in real money per household over the gulese decades.

Figure 3 also shows the forecasts of the per-Hmidanodel of Equation 2. Besides
tracking the reversal in trend, the model predicéslevel remarkably well, although with
smaller errors before the introduction of shadoweps. Before the introduction of shadow
sweep regulatory accounting, the predicted valuesscactual values six times. After the

introduction of shadow sweeps (after the transitaa more crudely measured M1) the
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predicted values do not cross actual values umtierthan ten years have elapsed, at the end of
2007.

Figure 4 shows the same data and results, butirtiesthe number of (logged)
households is added to the forecasts of the pesatmlid model, converting them to aggregate
terms. As with the per household data, the turpimigt in the trend of aggregate money comes
a few quarters after peak velocity (1981.3). Banbf this aggregate money perspective, the
aggregate model predicts a trend much the sanmterasmoney over the estimation period. In
contrast, the converted forecasts of the per haldehodel catch the change of slope in

aggregate money.

3.2 A less ambitious exercise: Forecasts based epomation 1959-1987

The estimation period used above excluded theéishioney and velocity that occurs
after 1981. Including some post-81 data on monéywarkedly increase the variance of money
trends used to obtain model estimates. In faetptbst positive 5-year trend slope of real M1
per household begins in 1982.3, a year after teistvelocity. So here | extend the estimation
period through 1987. This estimation period inelsithoth the most positive and most negative
5-year trends of aggregate real money and of meoaigd per household over the entire period
1959-2008.

For 1959.1-1987.4 coefficient estimates for thgragate model and the per-household
model are (respectively)

rm = 2.592 +0.545y -0.258r and (3)

rfhh = 7.406 +0.237yh -0.368r . )
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Notice the ratios of the estimated coefficient&qtiation 3 and those of Equation 1 are
respectively (for the constant, y and r) 0.6341a6d 1.95 This is a substantial shift in the
estimated coefficients of the aggregate model. ti®per household model the corresponding
ratios are much closer to one, the ratio of eseohabefficients of Equation 4 to those of
Equation 2 equaling respectively 0.96, 1.16 an@ 1.h the economic sense the per household
model estimates are relatively constant.

Figure 5 displays the fitted values and forechst® these models. Here including the
steep change in trend money 1982-87 does helptregate model, in the sense that forecast
errors do not increase over time as much as inrf€sy8 and 4. But the forecast errors of the
aggregate model are still much larger than thoskeoper household model, and the aggregate

model forecasts still drift substantially away frérand money.

4. Data characteristics and the performance of alter native forecast estimators

This section examines three questions. Firsttherg@er household variables 1(1), as
expected for their aggregate counterparts? Secncbintegration tests reject non-
cointegration among the scaled variables? Thindtife "ambitious” forecasting exercise (as

above), do alternative long-run estimators impropen Engle-Granger OLS?

4.1 Integration and cointegration.
Table 1 shows the results of ADF tests for thegrdtion properties of the data used in
the scaled (per household) model. Tests are coedlwdth and without a constant in the test

regression, and also including a constant and tiiemel, corresponding to three separate test
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assumptions. In addition, test regression lagsealexted to minimize both the Schwarz and
Akaike criteria, for a total of six tests for thelhof a unit root applied to each variable.

For each levels variable Table 1 reports the mimmprobability value across the test
assumptions. For the differenced data the maxiprabability value across tests is reported.
Thus for the levels variables the reported testas which leans towards rejection of a unit root
(actual test size is greater than this reportedlpe), while the reported results for the
differenced data is biased towards accepting tliteroot (actual test size is less than the reported
p-value). Despite this bias, a unit root is acedgor the variables in levels (with a smallest p-
value of 0.24), while a unit root is rejected foe tdifferenced variables (with a largest p-value of
0.002). The results of Table 1 imply the scaledaldes have the properties usually encountered
in monetary and income aggregates.

Table 2 displays Johansen cointegration testtsearl a null of no cointegrating
relationships (versus more than zero) among loggaldM1 per household (rmh), logged real
GDP per household (yh) and logged yields on Tréeswf 10-year maturity. Under the null the
model is a differenced VAR, so lag selection isalonthis differenced VAR (no levels or error-
correction included). The AIC selects three lagg] the SIC selects one lag, so results are
displayed for both truncations. Under both lagestbn criteria, Table 2 shows that a null of no

cointegrating relationships is rejected, with (noaf)j probability values of under one percent.

4.2 Sample information as experimental design
In long-run estimation we are trying to distingfluimeaningful from spurious common
trends. If the data came from controlled experitmevith income and the interest rate as the

controlled variables, then a well designed expenitmeuld impose substantial independent
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variation in the trends of these variables (r and yn addition, a well designed experiment
would impose sustained shifts in trends, so th&atran in trend money would be dominated by
the long-run relationship rather than by short-dynamics. From this perspective history has
given us a poorly designed experiment. But itsuwat that although far from ideal, the pre-
1982 movements in income and the interest ratelaser to a well designed experiment than the
post-1982 data.

Table 3 displays sample variances and correlatefficients for 5-year trends
(differences) of the (logged) interest rate andme. | chose five years because as displayed in
Figure 3, fitted values seldom diverge from acuadlies for more than five yedtsReading
down the first column foAyh, the variance of real GDP per househwjti in the earlier sample
(1959.1-81.3) is 3.33 *If) which is about one-third larger than in the samgsl a whole (2.43
*10). These variances faiyh are about an order of magnitude smaller thasaneple
variances for trends in the interest rate.

This would be a reasonable experimental desigreitointegrating coefficient on yh was
an order of magnitude larger than that for theregerate. But in most empirical studies and
theoretical models these coefficients are well inithe interval [-1, 2]. And in Equation 4 the
absolute values of the estimates differ by less tha. So historically the variation in yh is
much too small for a well designed experiment.

The entire sample 1959-2008 presents us with ditiagial element of a poorly designed
experiment. Ideally, there would be no correlatietween the trends of yh and the trends of r.
But as displayed in the first row of Table 3, tloerelation is about -0.2. So 1959-2008 there is
too little variation in income, and what little vation exists is not independent of the interest

rate.

8 Results for relative variances and correlationsamelar for first through 40'th differences.
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The poor experimental design is improved if wekloaly at the earlier period 1959.1-
1981.3. The last row of Table 3 displays the treadiances and correlation as calculated only
over this period. The sample variance\gh of 3.33*10° is more that a third greater than for
the sample as a whole. More importantly, the datign of Ayh andAr falls to nearly zero
(0.017). So in the earlier portion of the datavhgation in the trends of RGDP per household
and of the interest rate are more informative.

This has two sorts of implications. Startingmstiion at a later date will omit the portion
of data containing the most information. So untésse is substantial instability in the
cointegrating model relationship, forecasts baggmhumoving-window estimation will have
larger errors than forecasts based upon includiagarlier sample. Second, if the recovery
from the 2008 recession is particularly slow otistar if the recovery is particularly steep and
sustained, then this will represent the first Snst shock to trend yh in about three decades. So

updating this study to include all of the post-208covery may be of particular interest.

4.3 Long-run forecasts from alternative estimat@®LS and FM-OLS.

This section compares the forecast performane#t@inative estimators of the
cointegrating relationship in the "most ambitiouemid "less ambitious"” forecasting exercises
discussed above. Both FM-OLS (as in Phillips and Hansen (199X ®OLS (Saikkonen
(1982)) estimators are compared to the static EGgéanger approach above. For DOLS and
FM-OLS methods a variety of estimators are posslbfgending upon lag selection criteria
and/or choice of kernel and kernel bandwidth. Soordusion of terminology is possible here.

Both methods employ dynamic models. But the dycagt@ment is used as a means to produce

° Results for CCR as in Park (1992) were almosttidehto that for FM-OLS, with usually slightly lger forecast
RMSE.
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alternative estimators of the coefficients in ttegis cointegrating model. Thus the form of the

model used in these alternative forecasts is the s above in Section 3, only the form of the

estimator for theb'svaries across the methods.

For DOLS estimation | started with the maximum syatric number of leads and lags of
differenced variables possible. In both estinraamples (terminating in 1981 or 1987) the
SIC increased with any simplificatidfl. In FM-OLS for estimation of the variance-covaran
matrix | used the most commonly applied Bartlethied In choosing the kernel bandwidth |
employed the "fixed" Newey-West (1994) approachiciisets bandwidth on the basis of
sample sizé!

Table 4 displays the forecast RMSE of the compgedtatic models. The first column
shows results for the most ambitious forecastirgy@se, including the simple Engle-Granger
approach of Figures 4 and 5. The forecast RMSHa@ymg DOLS estimation is 0.107, about a
third larger than the RMSE (0.070) of the Engle+gex estimator. The forecast RMSE for FM-
OLS (0.047) is less than half that from DOLS, ahdu a third less than for Engle-Granger
estimation.

The last column of Table 4 estimates models ferd¢lss ambitious exercise, extending
the estimation to include five years after the majon in trend money. The difference between
the models narrows somewhat, but the DOLS modettst RMSE is about thirty percent larger
than the Engle-Granger model RMSE, and likewisalifference between Engle-Granger and
FM-OLS is about thirty percent. Since DOLS doesymeld an improvement over the simple

Engle-Granger approach, I drop it from consideratiothe remainder of this paper.

19 Forecasts from the model estimated with 2, 4, lee8s and lags resulted in larger RMSE.
™ The term “fixed” is used because other methodedeppon characteristics of the data that canrdiffén fixed
sample size.
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5. Shorter-run forecasting: Static cointegrating ver sus dynamic puretime series models

In forecast competitions pure time series modienmut-perform economic models.
When an economic model performs relatively wek, #aonomic model usually nests within it
pure time-series components. With integrated béegapure time series is inherently short run
(differenced ADL), while the cointegration modeimgerently long-run. Nonetheless it is
possible to make an interesting short-run comparigdahe two approaches. This section
considers the RMSE of a series of 1-step-aheaddstg, where "step-ahead" references the
updating of coefficient estimates as the samplaiters and the forecast date is extended. But it
also considers forecasts a K'th step-ahead, thriugR0 quarters.

This allows us to ask three related questionghdse a time horizon at which the static
cointegrating relationship forecasts with lower RBMtBan a differenced time series model? If
so, at what horizon does the static long-run mbeein to beat the dynamic short-run model?
Third, is the difference in performance large erfotggmatter? Put differently, how many
guarters is clearly the short-run, where pure-ts@ees (differenced) ADL models dominate, and
how many quarters ahead is the long-run, wheredh#egration model clearly dominates?

| refer to time series models (plural) becausd ¢imge the estimation sample is extended
by an additional quarter, | re-specify the lagairetd to minimize the SIC. The forecast from
the quarterly differenced model for the level ehkStep ahead is generated by iterating the
forecast difference forward K-1 times ("dynamicdoasts”) and then summing the total forecast
differences. In the static cointegration modeétmsts the estimation is updated at each step,
which for FM-OLS implies the bandwidth is increagims the sample is extended.

Figure 6 displays the forecast RMSE from the campgenodels as a function of the

forecast horizon (K). First, note that the stabmtegrating models begin to have a smaller
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forecast RMSE at a time horizon of 6 quarters. sTitne long-run models begin to contain
superior information at a horizon of about a yeat a half, in the sense that the static
cointegrating model outperforms the short-run teeeies model at that point and beyond.

Second, note that the gap between the time-samigggointegration models increases
steeply with the horizon. By a horizon of 12 gaeestthe RMSE of the pure time series model is
twice as large as the others, and by 20 quartéhsde times as large. And the cointegrating
model's forecast RMSE is remarkably constant, theheg no obvious slope to the function as
the forecast time horizon is extended from 1-quaatead through 20-quarters-ahead. Soon
after two years we are clearly “in the long-rumi' the sense that the long-run model strongly
dominates the short-run time series model.

Finally, note the performance of simple Engle-@erestimation is nearly identical to
that of FM-OLS. With this data and forecast tinmgibons of five years or less, there is little or
no gain to adopting the more complex FM-OLS estima&o in the remainder of this paper |

apply FM-OLS only when valid standard errors arentérest.

6. Potential for inflation modeling

Cointegration of (logged) real M1 per househod&l IGDP per household and the 10-
year treasury yield implies cointegration of thiedatwo variables with the price-level and
nominal M1 per household (mh). The real money i§ipation imposes a unitary weight on the
price-level, implying the cointegrating model

p = mh -(3 +buyh +hyr) +. (5)
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Using rimh from the cointegrating model employed in previsastions to generaje = mh -

rmhis merely a restriction of the unitary weight primedel of Equation 5. A distinct model

will estimate

p = bmh -(y +byh +hyr) +¢, (6)

without the constraintd=1. This section considers the sense in whieHdhg-run money
model has potential for use within a price-leved anflation model, rearranged into the form of

Equations 5 or 6.

6.1 Cointegration, estimates and fitted valuesftong-run models

Table 5 displays the results of Johansen testsoiategration among p, mh, yh, r and a
constant, respectively the GDP deflator, nominalp®ihousehold, real GDP per household and
the 10-year US Treasury yield 1959.1 -2008.4. Moimtegration is rejected with p-values of
0.0001 or less. This test does not impose thamnitominal money elasticity implicit in the
models of real M1? Estimating the cointegration relationship via FMS, the estimates with
and without imposing a unitary elasticity are preed in Table 6.

In addition to FM-OLS estimates, Table 6 pressitgple Engle-Granger estimation
results. Three characteristics stand out. Rimstunrestricted estimates for the coefficient on
nominal money per household (mh) are close to diffeying by 0.017 in FM-OLS or by 0.035
in simple Engle-Granger estimation. Second, forBGM5 the unitary elasticity restriction is
within half a standard error (0.041) of the uninettd estimate of 1.017. Third, when the unitary

elasticity is imposed then FM-OLS estimates arseko the simpler Engle-Granger estimates.

12 |mposing this restriction would merely repeat tasults of Table 2.
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Figure 7 displays actual and fitted levels of @@P deflator from the restricted Engle-
Granger regression (Equation 6), and also disgtagsasts as implied by estimates from the
sample 1959.1-1981.3, equivalent to the “ambitioushey forecasts of Figure 3. These
forecasts of the price-level track very well, espi considering the long forecast horizon.

But consider (by eye) the slope of the valuesteifover the whole sample displayed in
Figure 7. Over periods of a year or less the stfgted values is often steeply positive or
negative, implying inflation or deflation of magmites far from actual values. If the
cointegrating level estimates are to be substéntigeful in inflation forecasts, then we must be

interested in inflation over longer time horizons.

6.2 K'th step-ahead forecasts of inflation at khors of one to ten years

As in the forecasting exercise of Figure 6, hemesader K'th step-ahead forecasts based
upon the cointegrating model of the price-level &ipn 5) and a differenced ADL model with
lag selection criteria re-applied at each increnoéiihe terminal date of estimation. And as in
the forecasts of Figure 4, forecasts begin in 1885 always including the period 1959.1-79.4,
which includes most of any variation in income tteimdependent of interest rate trends. For

the cointegrating model the level forecasts K st#psad p,,x ) are converted to a forecast of

the implied annualized inflation rate as

A = exp[@rek - P@/K)] -1, (7)
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The ADL model is estimated in logged quarterly eliénces, with forecasts iterated ahead
(dynamic forecasts) producing a forecast of theudative change from time t to t+I<A(K Pisk )»

which is then transformed to an annualized inflatiate forecast as

Aot = expl@y Prek )A/K)] -1. (8)

Figure 8 displays the inflation forecast RMSE éach model as a function of the forecast
horizon (K), for K = 4 through 40 quarters ahedthe RMSE of the time series model is initially
1%, increasing slowly and almost linearly to 2% I06ryear ahead forecasts. The forecast
RMSE of the static cointegrating model is initiadl%, or four times that of the time-series
model. The static model forecast RMSE does nbb&dbw that of the time-series model until
the 14-quarter horizon. The difference betweernwmemodels increases slowly, so at a 5-year
horizon the difference is only half a percentagmipoFor a full percentage point difference the
forecast horizon has to be seven years or moreaelflong-run” is the horizon at which the
static cointegration model clearly outperforms Ai2l. model, then for inflation the long-run is
very long indeed.

| interpret these results as implying that thefulsess of the cointegrating model in
inflation forecasting is marginal, or certainlydesvident than performance in forecasting money
itself. If one compares the actual path of monewyhmusehold in Figure 5 to the path of the
price level in Figure 7, the reason for the différ@ performance can be seen in the differential
smoothness of the levels data. Post 1980 a linerad will fit the price-level data much more
tightly than a linear trend will fit money per halmwld. Hence even at long time horizons a joint
time series/cointegration model (i.e. an error-ection model) would place substantial weight

upon past trends. A long-run relationship is legsortant in inflation forecasting than it is in



forecasting of money (M1).
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7. Conclusion

This paper has proceeded on the premise thatneaders are skeptical of money
modeling, hence it will take strong results to beigigior beliefs. Two sorts of ambitious
demonstrations are presented. In the first dematia, a simple static cointegration model is
estimated over a time period in which velocity amahey per household trend downwards, with
the coefficient estimates used to forecast fron218808, a forecast period of more than 25
years in which trend velocity and money have reagtrsThe model tracks remarkably well.

In the second demonstration the model forecast BVBSK'th step ahead are compared
to those from a pure time series model. In mosh $arecasting contests the static cointegration
model would be nested within a dynamic form. Bertehthe cointegration model of money
competes with the time series benchmark withoub#reefit of added dynamic components.
Yet the static per household cointegration modeatdthe time series benchmark at a forecast
horizon of only six quarters, with the differenceforecast RMSE increasing steeply as the
horizon increases. At 20 quarters the forecast Rddiffer by a factor of three.

Along the way properties of the data and alteweatibintegrating estimators are
explored. The simple theoretical ideas presemte®Ection 1 imply it is important to distinguish
trends in income per household from other trer®ist most of the variation in trend income
occurs before 1982, and the post-1982 variatiotieeimd income are more highly correlated with
interest rate trends. So moving-window methodstvieixclude the earlier data are unlikely to
perform well. And once a model successfully fostsdhe large shift in trend money occurring
in 1982, there is relatively less for the modelaecast (the great moderation contains little

information). An important out-of-sample exercigdl be to check the performance of the
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model after the recovery from the 2008 recessiavei§ established, as this period will likely
include changes in trend income (and trend monety$@en in 30 years.

In the ambitious forecasts (estimation terminatm@981.3 or 1987.4), the FM-OLS
estimator produces forecasts with substantialljlemBMSEs than the simpler Engle-Granger
estimator. But this advantage disappears in the itnaditional K'th step-ahead forecasting
exercise. Forecasts based upon a DOLS estimatormepoorly, with lead-lag selection
criteria implying retention of so many lags as wbstantially reduce the degrees of freedom for
estimation.

The money model can be rearranged to model tie f@vel, and so a brief exploration
of potential in forecasting inflation is presentethe relative smoothness of inflation implies
pure time series properties will dominate over Emigorizons than when modeling money.
Given the pervasive finding in literature that ptiree-series models dominate other models of
inflation (as surveyed in Stock and Watson (2008)ime readers will take the performance of
the price-level cointegrating model to be impressiBut the gains over a pure time series model
are not substantial until the horizon is about frears, at which point the forecast RMSE
amounts to a bit more than half a point. | take th imply that exploration of any potential for
inflation modeling will require a move to forms whinest cointegrating and dynamic time
series models. This is in contrast to the abdit}he long-run static model to stand on its own

when modeling real M1.
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9.7+
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Figure3. A most ambitious long-run forecasting exerci&stimation sample terminates at shift
in trend velocity (and just before shift in trendmey). Static Engle-Granger model of the form
of Equations 1 or 2 is estimated 1959.1-1981.3) firejected forward using actual values of
income and the interest rate. Aggregate modefdffigind projected values are transformed to per
household values. Model forecasts treat incomerandest rate as known.



28

7.6+
7.5- Fitted 1959.1 -1981.3 Forecast 1981.4 -2008.4
7.4+
—— Real M1 i
7.39 ----- Per household model (static Engle-Granger) ~
79 77 Aggregate model (static Engle-Granger) /
. A%

6.4

L L
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Figure4. The most ambitious forecasting exercise of Fedhidisplayed in aggregate ternier
household model fitted and projected values arestoamed to aggregate values.
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Figure5. A less ambitious long run forecasting exerciBstimation sample includes 5 years
after money trend shift. Static Engle-Granger nhofi¢he form of Equations 3 or 4 is estimated
1959.1-1987.4, then projected forward using actahles of income and the interest rate.
Aggregate model fitted and projected values arestramed to per household values.
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Figure 6. Forecast RMSE 1980-2008 of real money per haldets function of forecast

horizon (K). Models are initially estimated 1959.1-1979.4, sedasts begin with 1979.4 +K.

In projections static models employ actual values@me and the interest rate (yh and r). Lags
in the time-series model were truncated to minintineeSIC, with the unconstrained model
including eight lags. Lag length for this modelswa-specified as the estimation sample was
extended quarter-by-quarter, with a maximum ofgs leetained. Static cointegration model
forecasts treat income and interest rate (yh aad Khown.
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Figure7. Price-level fitted and ambitious forecast valfresn inverted money demand model
(Equation 5).Forecast values from estimating coefficients 199981.3 employ actual values
of nominal money, income and the interest rate yhhr).



32

.045-
040

0351 |

0304 \ —— Time series model (differenced ADL)
\ —— Static model, Engle-Granger estimator

.025+

.020+

.015+

.010+

.005+

.000 T T T T T T T T T 1

Forecast horizon (K)

Figure8. Forecast RMSE 1980-2008 as function of forekbasgtzon (K). K'th quarter-ahead
forecasts of annualized inflation from static cegrating (inverted money demand) and pure
time series models. Lags in the time-series maget truncated to minimize the SIC, with the
unconstrained model including eight lags. Lagained always equaled one. A single-lag time-
series model imposing a unit root resulted in shglarger RMSEs. Static cointegration model
forecasts treat mh, yh and r as known.
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Tablel
Integration of per-household model variables:

ADF tests across assumptions and lag criteria.

Min p-value
Levels variables across tests
mh (Log real M1 per household) 0.86
yh (Log real GDP per household) 0.24
r (Log 10-year Treasury yield) 0.50
Max p-value
Differenced Variables across tests
Amh 0.002

Ayh less than 0.001
Ar less than 0.001

Notes: Before differencing and lag-truncation datquarterly 1959.1-2008.4.
Test regressions are constructed with both min &4€ min SIC lag criteria, and
with and without a constant or constant and trelcalys retained varied between
eight and zero. Results are as calculated by Byietnich employs probability
values from MacKinnon (1996).
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Table2
Johansen Cointegration Tests
Per household model variables (rmh, yh, r, conste8%9.1-2008.4

VAR Trace statistic Probability
lag criteria Lags retained (No cointegrating vectors) value
AlIC 3 42.64 0.007
SIC 1 50.13 less than 0.001

Notes: Probability values are less than 10% fardhthrough six lags. The aic and sic lag seledideria
were applied to a differenced VAR, which is thereot model under the null of no cointegration. Riss
are calculated using Eviews, which takes p-valva® fMacKinnon, Haug and Michelis (1999).
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Table3
Ex-post experimental design:
5-year trends in the interest rate and real gdfhpesehold

Sample variance Correlation
Sample Asyh Asr (Asyh, Asr)
1959.1-2008.4 2.43*10°  8.00 *10° -0.209
1959.1-1981.3 3.33*10°  2.64 *10° 0.017

Notes: Asx is the twenty-quarter difference-x..o. Correlation and
relative variances afyh andAr are similar for one- through 40-quarter
differences
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Table4
Forecast RMSE for real M1 per household in ambgtiand less ambitious exercise:
Alternative cointegrating estimators.

Estimate 1959.1 -1981.3 Estimate 1959.1 -1987.4
Estimation Method Forecast 1981.4 -2008.4 Forel288.1 -2008.4

Engle-Granger 0.0701 0.0662
DOLS 0.1073 0.0926
FM-OLS 0.0466 0.0464
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Table5
Price-level model from inverted money demand, withoposing unitary price-elasticity
Johansen cointegration tests (p, nominal mh, y¢tgnstant) 1959.1-2008.4

VAR Trace statistic Probability
lag criteria Lags retained (No cointegrating vectors) value

AlIC 7 77.60 0.0001

SIC 1 97.67 < 0.0001

Notes: The aic and sic lag selection criteria vagnglied to a differenced VAR, which is the correaidel under the
null of no cointegration. Results are calculatethg Eviews, which takes p-values from MacKinnoau and
Michelis (1999).
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Table6
Price-level cointegrating estimates, unrestricted estricted 1959.1-2008.4

p=by +bmh +b,yh +bsr

Estimation bo by b, bs
FM-OLS -5.812 1.017 -0.406  0.390
(SE) (1.075) (0.041) (0.126) (0.017)
FM-OLS -6.305 impose p=1 -0.350 0.399
(SE) (0.327) (0.029) (0.017)
Engle-Granger -5.555 1.035 -0.441 0.382
Engle-Granger -6.421 impose p=1 -0.337 0.382

Notes: As above, FM-OLS employs Bartlett kernghviewey-West “fixed” bandwidth
based upon sample size, here equal to 5 quarters).



