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Abstract 

A static cointegration model of US M1 forecasts beyond two decades ahead, conditional on 

known non-M1 variables.  Data is adjusted for misreporting induced by regulatory accounting 

"sweeps".  K’th-quarter-ahead forecasts from this model have smaller RMSE than those from a 

univariate (differenced) ADL model for k >5.  The model employs money and income scaled per 

household.  There are three theoretical reasons for doing so.  Scaling is necessary (a priori) to 

avoid inducing instability, miss-timing and trivial “self-cointegration".  The approach can be 

rearranged to model the price-level.  Potential for long-run inflation forecasting (conditioned on 

other variables) is explored. 
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0. Introduction 

 This paper shows a simple long-run model of US real M1 forecasts remarkably well, 

even twenty-five years ahead.  The initial forecasting exercise is severe, estimating a static levels 

model over quarterly data 1959-81.3 and then using these estimates (without updating) to 

forecast through 2008, taking income and interest rates as known during the forecast period.1  At 

1981.3 there is a sharp reversal in trend velocity, followed a year later by a large and sustained 

shift in trend real money.  Terminating the estimation sample in 1981.3 ensures the model must 

forecast the large shift in trend, however one prefers to measure the shift.  The long-run 

cointegrating model also does remarkably well in shorter run forecasting, beating differenced 

univariate (ADL) models at time horizons of six quarters or more.2  

 The model is distinguished from other approaches in scaling money and real GDP on a 

per household basis.  Section 1 discusses the theoretical reasons for scaling in this manner, and 

also presents a bit of historical background.  Section 2 discusses the M1 data and the adjustments 

needed after 1993 for a measure which includes most freely checkable explicitly insured 

deposits.  Section 3 shows the results of the long-run forecasting exercise, comparing the model 

scaled on a per household basis to the corresponding non-scaled model.   

 The remaining sections focus on scaled (per household) models.  Section 4 examines 

integration and cointegration tests, and forecast performance based upon estimation methods 

other than Engle-Granger OLS.  Section 5 presents short-run forecasting performance, 

comparing the static per household model to differenced univariate models in recursive 

                                                 
1 These are “conditional pseudo forecasts”, since only the dependent variable is treated as unknown. 
2 Lag truncation for the time-series model is re-evaluated at each step, hence I refer to these forecasts as coming 
from a series of time series models rather than from a single model. 
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forecasting from one through twenty quarters ahead.  Section 6 introduces obstacles to and 

prospects for inverting the model for price-level and inflation modeling. 

 This paper adopts the view that the most fundamental task is to prove the usefulness of 

the long run equilibrium relationship.  There is a long history of failures in theory-based 

forecasting and of apparent breakdown of money models, from Goldfeld (1976) to Hess Jones 

and Porter (1998).  Given this history, results dependent upon tests with restrictive assumptions 

can reasonably be taken as weak evidence.  If one finds this paper’s results for the static 

cointegrating model convincing, an obvious next step is to move to short-run error-correction 

forms.  But such models nest the long-run equilibrium relationship within a short-run model.  In 

these dynamic models the a-theoretic time series dynamics usually provide most of the fit and 

forecasting ability, even at moderately long horizons.  And even if there is agreement upon the 

long-run relationship, there will be multiple possible approaches for embedding this relationship 

within an error-correction form.  Establishing the strengths of the long-run equilibrium model is 

a fundamental first step towards dynamic modeling. 

 Hence this paper avoids formal testing as much as possible, and instead follows two paths 

most models fear to tread.  First, the static cointegrating model is used to forecast over long 

horizons, where “long” is well over five years.  Second, in shorter-run forecasts the static model 

is compared to a dynamic pure time series model.  Here the question is whether there are short 

horizons at which the static model clearly dominates.3   

 

                                                 
3 This provides an informal definition of the long-run.  The transition from short-run to long-run is the forecast 
horizon at which the static cointegrating model begins to dominate a pure-time series model.   
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1. The importance of scaling 

 The model presented below is simple, modifying standard approaches only in scaling 

money and GDP on a per household basis.  This was suggested by Arthur Okun in a conference 

discussion of Goldfeld’s (1973) exploration of scale variables in money regressions.  In his 

exploration of the possible benefits of scaling Goldfeld had rejected a role for population in 

modeling total money.4  But in his follow-up paper Goldfeld (1976) decided his tests were not 

valid and that theory implied a model employing money and income measured per-capita.  Yet 

the issue of scaling and Okun’s suggestion for scaling on a per household basis largely 

disappears from the literature after the 1970’s.   

 

1.1 Theoretical considerations for stability 

 Even in a world scaled up as a sum of representative agents, aggregate GDP growth is a 

function of both increases in individual incomes and increases in population.  In itself, 

population growth merely replicates or re-scales the economy proportionately, so (barring 

externalities) this replication elasticity must be one.  If the individual income elasticity does not 

also equal one, then a GDP elasticity will vary as population growth and individual income 

growth vary in their relative importance.  So if population and individual income elasticities are 

unequal and their growth rates vary then we know a purely aggregate model must be unstable.  

Greene (1999) shows that for US data this instability will be large enough to matter if the 

individual income elasticity is less than 0.75.  Results below imply a per household GDP 

elasticity well under this value.  

                                                 
4  Meltzer (1963) also took an empirical approach to the issue, rejecting regressions of money per capita on income 
or wealth per capita because the R2 was smaller than for non-scaled variables, and because there was more sub-
period variation in coefficients for the per-capita models.  In addition, he found that the “population elasticity” was 
not equal to one.  These were static regressions in levels, but of course he estimated variances assuming stationary 
data. 
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1.2 Timing 

 If we grant the need for some sort of population scaling, then there is a second 

consideration.  There is a lag between changes in the birth rate and changes in the number of 

managers of income and money.  Even when looking at long-run trends, there will typically be 

about twenty years from a change in birth-driven population growth to the date at which this 

impacts the number of adults earning income and managing money holdings.  So even if we are 

interested only in long-run relationships, something akin to Okun’s scaling suggestion is 

essential for the timing of empirical data to correspond to theoretical notions.5  Greene (2010) 

describes a number of alternative suggestions if data on the number of households is unavailable.  

These include using residential construction data, using measures of the adult population or the 

adult population less the number of married couples, or integrating up from birth, death and 

immigration rates. 

 

1.3 An economically meaningless common trend 

 A third reason to use population or household scaling in estimating monetary models is 

that households will be cointegrated with households (or population with population), but such 

"self cointegration" is not very interesting.  Denoting the log of households “h”, the log of real 

money per capita “rmh”, and the log of real GDP per capita “yh”, then total real money is rmh 

+h, log real GDP is yh +h, and the standard aggregate model treats rmh +h as a function of yh 

+h.  As changes in rmh and yh become smaller relative to changes in h, the model comes closer 

to treating households as a function of households.   

                                                 
5  Ideally one would want a measure of independent economic units, and it may be possible to marginally improve 
upon Okun’s suggestion. 
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 For the USA from 1959 to 2008 the number of households (not logged) increased by a 

factor of about 2.28 and RGDP per household increased by a factor of about 2.11.  So more than 

half the change in RGDP is due to mere re-scaling.  Likewise, total real M1 increased by a factor 

of 2.76, but almost all of this is driven by replication, with real money per household only 1.21 

times as large in 2008 as in 1959.  Hence regressing total money on GDP (rmh +h upon yh +h) is 

more than halfway to modeling h as a function of h, treating “self-cointegration” as economically 

meaningful.6  

 

2.  M1, regulatory shadow-sweep accounting, and the long-run forecasting exercise 

 Starting in 1994 the Board of Governors essentially ended the requirement that banks 

report all depositor holdings of freely checkable accounts as such, allowing some to be reported 

as money market deposits with no reserve requirement.  The limited discussion in the economics 

literature has referred to these as “retail-sweeps”, but this is a misleading term.7  Unlike true 

sweep accounts set up for the benefit of deposit owners, the balance “swept” into these shadow 

MMDA accounts does not pay money market interest to the depositor.  The liquidity of the retail 

depositor is not affected.  The retail checking account depositor writes unlimited checks 

regardless of the existence or non-existence of the shadow account.  And the size and date of any 

"sweep transfer” is not reported to the depositor.  So more transparent terms for this device are 

“shadow sweep”, or “regulatory sweep”.  This is really a (de-)regulatory move in the same spirit 

                                                 
6 Data on the number of US households equals the number of occupied housing units, as published by the US 
Census.  Historical data is available as “Table HH-1, Households by Type: 1940 to Present” in the most recent 
Families and Living Arrangements/Historical Data section of the US Census Bureau website, 
http://www.census.gov/population/www/popdata.html.  This source data is annual.  In the empirical sections below 
these annual figures are interpolated to quarterly estimates. 
7 In the banking industry literature the device is sometimes referred to as a "reserve sweep". 



 

 

6 

 

as regulatory accounting standards which allow “off-balance sheet” activities which nonetheless 

affect the profitability of and risk borne by a financial institution.   

 An oddity of the new regulatory accounting rules was that they were proposed by an 

individual bank (O'Sullivan( 1998, p88)).  The banking committee of the US Senate and the 

Board of Governors treated this as a proprietary innovation.  The Board further reasoned that if 

the innovating bank had been required to report the volume of shadow sweeps then this might 

have revealed details of the particular bank’s activities to competitors (Melzer and Kohn in  

FMOC Minutes (Sept. 1995, p33)).  Protecting the private innovation was more important than 

maintaining the reporting and measurement of freely checkable deposits. 

 Thus the Board of Governors decided not to require reporting of deposits in standard 

retail checking accounts which are treated for purposes of regulatory reserve-requirement 

accounting as money market deposits.  Instead the Board proceeded to publish fictitious M1 data, 

with a growing portion of traditional checking balances hidden in the shadow sweeps.  As of this 

date shadow-sweep accounting is estimated to hide nearly half of freely checkable deposits, so 

reported M1 is now about two-thirds of its true value from the depositor (and thus behavioral) 

perspective. 

 

2.1 Adjusting the Fictitious Data 

 Once enough time passed to protect innovator privacy, the Board of Governors began to 

publish estimates of the volume of deposits held as M1 but not reported in the official data.  To 

extend the M1 data beyond 1993, I take this data on estimated shadow sweeps and add it to M1 

as reported by the Board.  These adjusted figures are nearly identical to those developed by 

Cynamon, Dutkowsky, and Jones (2006), periodically updated  and published as series M1RS at 
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their website (http://www.sweepmeasures.com).  But these are estimates.  Banks are still not 

required to report the volume of freely checkable deposits hidden in the shadow MMDA 

accounts. 

 Anderson and Rasche (2001) report evidence that the accounting-sweep estimates are 

likely accurate.  But unlike the remainder of measured M1, the monthly sweep data is so smooth 

as to contain no apparent seasonal components.  Even if accurate on average, either there is no 

seasonal pattern or the estimates miss this detail.  This may affect dynamic models employing 

M1 data adjusted for shadow sweeps, since seasonal components may shift sometime after 1993.  

But except for univariate (pure time series) models used as benchmarks, the focus here will be 

upon long-run static models. 

 

2.2  The characteristics of aggregate  M1, velocity and money per household 

 Figure 1 displays the trend characteristics of logged real M1.  After 1982.3 there is a 

large increase in the trend slope.  This change in trend comes a year after the shift in trend 

velocity, marked with the vertical line.  Before 1982.3 there is some variation in trend, money 

grows at a steady rate 1959.1-73.1, and then declines a bit until the turning point in 1982.3.  But 

these changes are dwarfed by the shift to a relatively constant increasing trend at 1982.3.   

 Figure 2 displays velocity in the sense of the ratio of real GDP to real M1.  Velocity rises 

along a nearly linear path 1959.1-81.3.  Then the trend ceases to be nearly linear.  If one 

compares endpoints of the earlier to the later period (1981 versus 2008) there is little change in 

velocity, for a cumulatively flat trend.  But along the way and for periods of as long as three 

years there are both positive and negative trends.  So when comparing pre- and post-1981 time 

periods, velocity differs in both trend and variation in trend.   
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 Figure 2 also displays real M1 per household.  This largely mirrors the behavior of 

velocity, with two nuances.  First, the turning point for trend money per household comes a bit 

later (1982.3) than for velocity (1981.3).  This turning point for money per household is the same 

as for aggregate real M1 in Figure 1.  Second, before 1981.3 money per household does not 

follow a linear trend as closely as does velocity.  In particular, the trend of money per household 

shifts in 1971.3, before the larger shift in trend at 1982.3.  So there is a bit more pre-1982 

variation in the trends of real M1 per household than there is variation in trend velocity.  But as 

with trend money, there is a large shift in trend velocity and real M1 per household after 1982.   

 

3. Long-run static model forecasting 

 This section compares the long-run forecasting performance of two long-run models 

estimated via Engle-Granger static levels, one written in standard aggregate terms and the other 

with money and RGDP scaled per household.  The first forecasting exercise estimates through 

1981.3, while the second estimates the models through 1987.  In the above section we saw that 

whether viewed through the lens of aggregate money, velocity, or money per household the 

1959.1-81.3 data excludes a large shift in trend.  Hence I characterize long-run forecasts based 

upon estimation within this period as “most ambitious”.  The terminal estimation date for the 

second forecasting exercise is chosen to include five years of data after the shift in trend money 

(1959-87), and so is less ambitious. 

 

3.1  A most ambitious exercise: Forecasts through 2008 based upon estimation 1959-1981 

 Here the simple static cointegration (levels) models are estimated through the date of 

peak velocity 1959.1-1981.3.   The coefficient estimates are then used to forecast the remaining 
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sample through 2008.4, taking the interest rate and income at actual values (conditional 

forecasts).  The two models differ only in whether the measure of money and income is scaled.  

The first model regresses (logged) aggregate real M1 upon a constant (rm), real (chain weighted) 

GDP (y), and an interest rate (r), the 10-year Treasury (constant maturity) yield.  Nominal money 

is deflated using the chain-weighted GDP deflator.  The second model employs the same 

variables, but money and GDP are scaled per household (rmh and yh).  The coefficient estimates 

for the aggregate model and the per-household model are (respectively) 

 m̂r  = 4.103 +0.333y -0.132r  and      (1) 

 hm̂r = 7.748 +0.204yh -0.356r       (2) 

and forecasts in Figures 3 and 4 use these estimated values.  

 In Figure 3 the forecasts of the aggregate model of Equation 1 have been converted to per 

household terms by subtracting the log of households.  For the first couple years after the turning 

point, the aggregate model appears to track the reversal of trend money (per household).  But by 

the late 1980’s the forecast values from the aggregate model are consistently drifting farther 

away from actual values.  The aggregate model is a limited success in the sense that it does not 

predict a continuation of the pre-1981 downward trend.  But it is unable to track the large 

increase in real money per household over the subsequent decades. 

 Figure 3 also shows the forecasts of the per-household model of Equation 2.  Besides 

tracking the reversal in trend, the model predicts the level remarkably well, although with 

smaller errors before the introduction of shadow sweeps.  Before the introduction of shadow 

sweep regulatory accounting, the predicted values cross actual values six times.  After the 

introduction of shadow sweeps (after the transition to a more crudely measured M1) the 
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predicted values do not cross actual values until more than ten years have elapsed, at the end of 

2007. 

 Figure 4 shows the same data and results, but this time the number of (logged) 

households is added to the forecasts of the per household model, converting them to aggregate 

terms.  As with the per household data, the turning point in the trend of aggregate money comes 

a few quarters after peak velocity (1981.3).  But from this aggregate money perspective, the 

aggregate model predicts a trend much the same as trend money over the estimation period.  In 

contrast, the converted forecasts of the per household model catch the change of slope in 

aggregate money. 

 

3.2  A less ambitious exercise: Forecasts based upon estimation 1959-1987 

 The estimation period used above excluded the shift in money and velocity that occurs 

after 1981.  Including some post-81 data on money will markedly increase the variance of money 

trends used to obtain model estimates.  In fact, the most positive 5-year trend slope of real M1 

per household begins in 1982.3, a year after the shift in velocity.  So here I extend the estimation 

period through 1987.  This estimation period includes both the most positive and most negative 

5-year trends of aggregate real money and of money scaled per household over the entire period 

1959-2008.  

 For 1959.1-1987.4 coefficient estimates for the aggregate model and the per-household 

model are (respectively) 

 m̂r  = 2.592 +0.545y -0.258r    and       (3) 

 hm̂r = 7.406 +0.237yh -0.368r .      (4) 
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Notice the ratios of the estimated coefficients of Equation 3 and those of Equation 1 are 

respectively (for the constant, y and r)  0.63, 1.64 and 1.95  This is a substantial shift in the 

estimated coefficients of the aggregate model.  For the per household model the corresponding 

ratios are much closer to one, the ratio of estimated coefficients of Equation 4 to those of 

Equation 2 equaling respectively 0.96, 1.16 and 1.03 .  In the economic sense the per household 

model estimates are relatively constant. 

 Figure 5 displays the fitted values and forecasts from these models.  Here including the 

steep change in trend money 1982-87 does help the aggregate model, in the sense that forecast 

errors do not increase over time as much as in Figures 3 and 4.  But the forecast errors of the 

aggregate model are still much larger than those of the per household model, and the aggregate 

model forecasts still drift substantially away from trend money. 

 

4.  Data characteristics and the performance of alternative forecast estimators 

 This section examines three questions.  First, are the per household variables I(1), as 

expected for their aggregate counterparts?   Second, do cointegration tests reject non-

cointegration among the scaled variables?  Third, for the "ambitious" forecasting exercise (as 

above), do alternative long-run estimators improve upon Engle-Granger OLS?   

 

4.1 Integration and cointegration. 

 Table 1 shows the results of ADF tests for the integration properties of the data used in 

the scaled (per household) model.  Tests are conducted with and without a constant in the test 

regression, and also including a constant and time trend, corresponding to three separate test 
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assumptions.  In addition, test regression lags are selected to minimize both the Schwarz and 

Akaike criteria, for a total of six tests for the null of a unit root applied to each variable. 

 For each levels variable Table 1 reports the minimum probability value across the test 

assumptions.  For the differenced data the maximum probability value across tests is reported.  

Thus for the levels variables the reported test is that which leans towards rejection of a unit root 

(actual test size is greater than this reported p-value), while the reported results for the 

differenced data is biased towards accepting the unit root (actual test size is less than the reported 

p-value).  Despite this bias, a unit root is accepted for the variables in levels (with a smallest p-

value of 0.24), while a unit root is rejected for the differenced variables (with a largest p-value of 

0.002).  The results of Table 1 imply the scaled variables have the properties usually encountered 

in monetary and income aggregates. 

 Table 2 displays Johansen cointegration test results for a null of no cointegrating 

relationships (versus more than zero) among logged real M1 per household (rmh), logged real 

GDP per household (yh) and logged yields on Treasuries of 10-year maturity.  Under the null the 

model is a differenced VAR, so lag selection is done in this differenced VAR (no levels or error-

correction included).  The AIC selects three lags, and the SIC selects one lag, so results are 

displayed for both truncations.  Under both lag-selection criteria, Table 2 shows that a null of no 

cointegrating relationships is rejected, with (nominal) probability values of under one percent. 

 

4.2  Sample information as experimental design 

  In long-run estimation we are trying to distinguish meaningful from spurious common 

trends.  If the data came from controlled experiments with income and the interest rate as the 

controlled variables, then a well designed experiment would impose substantial independent 
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variation in the trends of these variables (r and yh).  In addition, a well designed experiment 

would impose sustained shifts in trends, so the variation in trend money would be dominated by 

the long-run relationship rather than by short-run dynamics.  From this perspective history has 

given us a poorly designed experiment.  But it turns out that although far from ideal, the pre-

1982 movements in income and the interest rate are closer to a well designed experiment than the 

post-1982 data.  

 Table 3 displays sample variances and correlation coefficients for 5-year trends 

(differences) of the (logged) interest rate and income.  I chose five years because as displayed in 

Figure 3, fitted values seldom diverge from actual values for more than five years.8  Reading 

down the first column for ∆yh, the variance of real GDP per household ∆yh in the earlier sample 

(1959.1-81.3) is 3.33 *10-3, which is about one-third larger than in the sample as a whole (2.43 

*10-3).  These variances for ∆yh are about an order of magnitude smaller than the sample 

variances for trends in the interest rate. 

 This would be a reasonable experimental design if the cointegrating coefficient on yh was 

an order of magnitude larger than that for the interest rate.  But in most empirical studies and 

theoretical models these coefficients are well within the interval [-1, 2].  And in Equation 4 the 

absolute values of the estimates differ by less than 0.2.  So historically the variation in yh is 

much too small for a well designed experiment.   

 The entire sample 1959-2008 presents us with an additional element of a poorly designed 

experiment.  Ideally, there would be no correlation between the trends of yh and the trends of r.  

But as displayed in the first row of Table 3, the correlation is about -0.2.  So 1959-2008 there is 

too little variation in income, and what little variation exists is not independent of the interest 

rate. 
                                                 
8 Results for relative variances and correlation are similar for first through 40’th differences. 
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 The poor experimental design is improved if we look only at the earlier period 1959.1-

1981.3.  The last row of Table 3 displays the trend variances and correlation as calculated only 

over this period.  The sample variance of ∆yh of 3.33*10-3 is more that a third greater than for 

the sample as a whole.  More importantly, the correlation of ∆yh and ∆r falls to nearly zero 

(0.017).  So in the earlier portion of the data the variation in the trends of RGDP per household 

and of the interest rate are more informative. 

 This has two sorts of implications.  Starting estimation at a later date will omit the portion 

of data containing the most information.  So unless there is substantial instability in the 

cointegrating model relationship, forecasts based upon moving-window estimation will have 

larger errors than forecasts based upon including the earlier sample.  Second, if the recovery 

from the 2008 recession is particularly slow or stalls, or if the recovery is particularly steep and 

sustained, then this will represent the first sustained shock to trend yh in about three decades.  So 

updating this study to include all of the  post-2008 recovery may be of particular interest. 

 

4.3  Long-run forecasts from alternative estimators, DOLS and FM-OLS. 

 This section compares the forecast performance of alternative estimators of the 

cointegrating relationship in the "most ambitious"  and "less ambitious" forecasting exercises 

discussed above.9   Both FM-OLS (as in Phillips and Hansen (1990)) and DOLS (Saikkonen 

(1982)) estimators are compared to the static Engle-Granger approach above.  For DOLS and 

FM-OLS methods a variety of estimators are possible depending upon lag selection criteria 

and/or choice of kernel and kernel bandwidth.  Some confusion of terminology is possible here.  

Both methods employ dynamic models.  But the dynamic element is used as a means to produce 

                                                 
9 Results for CCR as in Park (1992) were almost identical to that for FM-OLS, with usually slightly larger forecast 
RMSE. 
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alternative estimators of the coefficients in the static cointegrating model.  Thus the form of the 

model used in these alternative forecasts is the same as above in Section 3, only the form of the 

estimator for the s'b̂ varies across the methods. 

 For DOLS estimation I started with the maximum symmetric number of leads and lags of 

differenced variables possible.   In both estimation samples (terminating in 1981 or 1987) the 

SIC increased with any simplification.10  In FM-OLS for estimation of the variance-covariance 

matrix I used the most commonly applied Bartlett kernel.  In choosing the kernel bandwidth I 

employed the "fixed" Newey-West (1994) approach, which sets bandwidth on the basis of 

sample size.11    

 Table 4 displays the forecast RMSE of the competing static models.  The first column 

shows results for the most ambitious forecasting exercise, including the simple Engle-Granger 

approach of Figures 4 and 5.  The forecast RMSE employing DOLS estimation is 0.107, about a 

third larger than the RMSE (0.070) of the Engle-Granger estimator.  The forecast RMSE for FM-

OLS (0.047) is less than half that from DOLS, and about a third less than for Engle-Granger 

estimation. 

 The last column of Table 4 estimates models for the less ambitious exercise, extending 

the estimation to include five years after the major turn in trend money.  The difference between 

the models narrows somewhat, but the DOLS model forecast RMSE is about thirty percent larger 

than the Engle-Granger model RMSE, and likewise the difference between Engle-Granger and 

FM-OLS is about thirty percent.  Since DOLS does not yield an improvement over the simple 

Engle-Granger approach, I drop it from consideration in the remainder of this paper.   

 

                                                 
10 Forecasts from the model estimated with 2, 4, or 8 leads and lags resulted in larger RMSE. 
11 The term “fixed” is used because other methods depend upon characteristics of the data that can differ with fixed 
sample size.   
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5.  Shorter-run forecasting: Static cointegrating versus dynamic pure time series models 

 In forecast competitions pure time series models often out-perform economic models.  

When an economic model performs relatively well, the economic model usually nests within it 

pure time-series components.  With integrated variables pure time series is inherently short run 

(differenced ADL), while the cointegration model is inherently long-run.  Nonetheless it is 

possible to make an interesting short-run comparison of the two approaches.  This section 

considers the RMSE of a series of 1-step-ahead forecasts, where "step-ahead" references the 

updating of coefficient estimates as the sample terminus and the forecast date is extended.  But it 

also considers forecasts a K'th step-ahead, through K = 20 quarters.   

 This allows us to ask three related questions.  Is there a time horizon at which the static 

cointegrating relationship forecasts with lower RMSE than a differenced time series model?  If 

so, at what horizon does the static long-run model begin to beat the dynamic short-run model?  

Third, is the difference in performance large enough to matter?  Put differently, how many 

quarters is clearly the short-run, where pure-time series (differenced) ADL models dominate, and 

how many quarters ahead is the long-run, where the cointegration model clearly dominates? 

 I refer to time series models (plural) because each time the estimation sample is extended 

by an additional quarter, I re-specify the lags retained to minimize the SIC.  The forecast from 

the quarterly differenced model for the level a K'th step ahead is generated by iterating the 

forecast difference forward K-1 times ("dynamic forecasts") and then summing the total forecast 

differences.  In the static cointegration model forecasts the estimation is updated at each step, 

which for FM-OLS implies the bandwidth is increasing as the sample is extended. 

 Figure 6 displays the forecast RMSE from the competing models as a function of the 

forecast horizon (K).  First, note that the static cointegrating models begin to have a smaller 
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forecast RMSE at a time horizon of 6 quarters.  Thus the long-run models begin to contain 

superior information at a horizon of about a year and a half, in the sense that the static 

cointegrating model outperforms the short-run time-series model at that point and beyond. 

 Second, note that the gap between the time-series and cointegration models increases 

steeply with the horizon.  By a horizon of 12 quarters the RMSE of the pure time series model is 

twice as large as the others, and by 20 quarters is three times as large.  And the cointegrating 

model's forecast RMSE is remarkably constant, there being no obvious slope to the function as 

the forecast time horizon is extended from 1-quarter-ahead through 20-quarters-ahead.  Soon 

after two years we are clearly “in the long-run”, in the sense that the long-run model strongly 

dominates the short-run time series model. 

 Finally, note the performance of simple Engle-Granger estimation is nearly identical to 

that of FM-OLS.  With this data and forecast time horizons of five years or less, there is little or 

no gain to adopting the more complex FM-OLS estimator.  So in the remainder of this paper I 

apply FM-OLS only when valid standard errors are of interest. 

 

6.  Potential for inflation modeling  

 Cointegration of (logged) real M1 per household, real GDP per household and the 10-

year treasury yield implies cointegration of the latter two variables with the price-level and 

nominal M1 per household (mh).  The real money specification imposes a unitary weight on the 

price-level, implying the cointegrating model  

p = mh -(b0 +b1yh +b2r) +ε.           (5) 
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Using hm̂r  from the cointegrating model employed in previous sections to generate p̂  = mh -

hm̂r is merely a restriction of the unitary weight price model of Equation 5.  A distinct model 

will estimate  

p = b3mh -(b0 +b1yh +b2r) +ε,         (6) 

 

without the constraint b3 =1.   This section considers the sense in which the long-run money 

model has potential for use within a price-level and inflation model, rearranged into the form of 

Equations 5 or 6. 

 

6.1  Cointegration, estimates and fitted values from long-run models 

 Table 5 displays the results of Johansen tests for cointegration among p, mh, yh, r and a 

constant, respectively the GDP deflator, nominal m1 per household, real GDP per household and 

the 10-year US Treasury yield 1959.1 -2008.4.  Non-cointegration is rejected with p-values of 

0.0001 or less.  This test does not impose the unitary nominal money elasticity implicit in the 

models of real M1.12  Estimating the cointegration relationship via FM-OLS, the estimates with 

and without imposing a unitary elasticity are presented in Table 6. 

 In addition to FM-OLS estimates, Table 6 presents simple Engle-Granger estimation 

results.  Three characteristics stand out.  First, the unrestricted estimates for the coefficient on 

nominal money per household (mh) are close to one, differing by 0.017 in FM-OLS or by 0.035 

in simple Engle-Granger estimation.  Second, for FM-OLS the unitary elasticity restriction is 

within half a standard error (0.041) of the unrestricted estimate of 1.017.  Third, when the unitary 

elasticity is imposed then FM-OLS estimates are close to the simpler Engle-Granger estimates. 

                                                 
12 Imposing this restriction would merely repeat the results of Table 2. 
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 Figure 7 displays actual and fitted levels of the GDP deflator from the restricted Engle-

Granger regression (Equation 6), and also displays forecasts as implied by estimates from the 

sample 1959.1-1981.3, equivalent to the “ambitious” money forecasts of  Figure 3.  These 

forecasts of the price-level track very well, especially considering the long forecast horizon.   

 But consider (by eye) the slope of the values as fitted over the whole sample displayed in 

Figure 7.  Over periods of a year or less the slope of fitted values is often steeply positive or 

negative, implying inflation or deflation of magnitudes far from actual values.  If the 

cointegrating level estimates are to be substantially useful in inflation forecasts, then we must be 

interested in inflation over longer time horizons. 

 

 

6.2  K'th step-ahead forecasts of inflation at horizons of one to ten years 

 As in the forecasting exercise of Figure 6, here consider K’th step-ahead forecasts based 

upon the cointegrating model of the price-level (Equation 5) and a differenced ADL model with 

lag selection criteria re-applied at each increment of the terminal date of estimation.  And as in 

the forecasts of Figure 4, forecasts begin in 1980, thus always including the period 1959.1-79.4, 

which includes most of any variation in income trends independent of interest rate trends.  For 

the cointegrating model the level forecasts K steps ahead ( Ktp̂ + ) are converted to a forecast of 

the implied annualized inflation rate as 

LR
Kπ̂  = 1- )(4/K)]p- p̂exp[( tKt+ .        (7) 
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The ADL model is estimated in logged quarterly differences, with forecasts iterated ahead 

(dynamic forecasts) producing a forecast of the cumulative change from time t to t+K ( KtK pˆ
+∆ ), 

which is then transformed to an annualized inflation rate forecast as 

ADL
Kπ̂ = 1- )(4/K)]pˆexp[( KtK +∆ .        (8) 

 

 Figure 8 displays the inflation forecast RMSE for each model as a function of the forecast 

horizon (K), for K = 4 through 40 quarters ahead.  The RMSE of the time series model is initially 

1%, increasing slowly and almost linearly to 2% for 10-year ahead forecasts.  The forecast 

RMSE of the static cointegrating model is initially 4%, or four times that of the time-series 

model.  The static model forecast RMSE does not fall below that of the time-series model until 

the 14-quarter horizon.  The difference between the two models increases slowly, so at a 5-year 

horizon the difference is only half a percentage point.  For a full percentage point difference the 

forecast horizon has to be seven years or more.  If the “long-run” is the horizon at which the 

static cointegration model clearly outperforms the ADL model, then for inflation the long-run is 

very long indeed. 

 I interpret these results as implying that the usefulness of the cointegrating model in 

inflation forecasting is marginal, or certainly less evident than performance in forecasting money 

itself.  If one compares the actual path of money per household in Figure 5 to the path of the 

price level in Figure 7, the reason for the differential performance can be seen in the differential 

smoothness of the levels data.  Post 1980 a linear trend will fit the price-level data much more 

tightly than a linear trend will fit money per household.  Hence even at long time horizons a joint 

time series/cointegration model (i.e. an error-correction model) would place substantial weight 

upon past trends.  A long-run relationship is less important in inflation forecasting than it is in 
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forecasting of money (M1).  
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7.  Conclusion 

 This paper has proceeded on the premise that most readers are skeptical of money 

modeling, hence it will take strong results to budge prior beliefs.  Two sorts of ambitious 

demonstrations are presented.  In the first demonstration, a simple static cointegration model is 

estimated over a time period in which velocity and money per household trend downwards, with 

the coefficient estimates used to forecast from 1982-2008, a forecast period of more than 25 

years in which trend velocity and money have reversed.  The model tracks remarkably well.   

 In the second demonstration the model forecast RMSEs a K’th step ahead are compared 

to those from a pure time series model.  In most such forecasting contests the static cointegration 

model would be nested within a dynamic form.  But here the cointegration model of money 

competes with the time series benchmark without the benefit of added dynamic components.  

Yet the static per household cointegration model beats the time series benchmark at a forecast 

horizon of only six quarters, with the difference in forecast RMSE increasing steeply as the 

horizon increases.  At 20 quarters the forecast RMSEs differ by a factor of three. 

 Along the way properties of the data and alternative cointegrating estimators are 

explored.  The simple theoretical ideas presented in Section 1 imply it is important to distinguish 

trends in income per household from other trends.  But most of the variation in trend income 

occurs before 1982, and the post-1982 variations in trend income are more highly correlated with 

interest rate trends.  So moving-window methods which exclude the earlier data are unlikely to 

perform well.  And once a model successfully forecasts the large shift in trend money occurring 

in 1982, there is relatively less for the model to forecast (the great moderation contains little 

information).  An important out-of-sample exercise will be to check the performance of the 



 

 

23 

 

model after the recovery from the 2008 recession is well established, as this period will likely 

include changes in trend income (and trend money) not seen in 30 years.   

 In the ambitious forecasts (estimation terminating in 1981.3 or 1987.4), the FM-OLS 

estimator produces forecasts with substantially smaller RMSEs than the simpler Engle-Granger 

estimator.  But this advantage disappears in the more traditional K'th step-ahead forecasting 

exercise.  Forecasts based upon a DOLS estimator perform poorly, with lead-lag selection 

criteria implying retention of so many lags as to substantially reduce the degrees of freedom for 

estimation. 

 The money model can be rearranged to model the price level, and so a brief exploration 

of potential in forecasting inflation is presented.  The relative smoothness of inflation implies 

pure time series properties will dominate over longer horizons than when modeling money.  

Given the pervasive finding in literature that pure time-series models dominate other models of 

inflation (as surveyed in Stock and Watson (2009)), some readers will take the performance of 

the price-level cointegrating model to be impressive.  But the gains over a pure time series model 

are not substantial until the horizon is about five years, at which point the forecast RMSE 

amounts to a bit more than half a point.  I take this to imply that exploration of any potential for 

inflation modeling will require a move to forms which nest cointegrating and dynamic time 

series models.  This is in contrast to the ability of the long-run static model to stand on its own 

when modeling real M1. 
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Figure 1.  Shifting trends in logged real M1 1959-2008 
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Figure 2.  Shifting trends in velocity and real M1 per household. 
 



 

 

27 

 

 
 

9.0

9.1

9.2

9.3

9.4

9.5

9.6

9.7

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Real M1 per household
Per household model (static Engle-Granger)
Aggregate model (static Engle-Granger)

Fitted 1959.1 -1981.3    Forecast 1981.4 -2008.4

 
Figure 3.  A most ambitious long-run forecasting exercise.  Estimation sample terminates at shift 
in trend velocity (and just before shift in trend money).  Static Engle-Granger model of the form 
of Equations 1 or 2 is estimated 1959.1-1981.3, then projected forward using actual values of 
income and the interest rate.  Aggregate model fitted and projected values are transformed to per 
household values.  Model forecasts treat income and interest rate as known. 
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Figure 4.  The most ambitious forecasting exercise of Figure 3 displayed in aggregate terms.  Per 
household model fitted and projected values are transformed to aggregate values. 
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Figure 5.  A less ambitious long run forecasting exercise.  Estimation sample includes 5 years 
after money trend shift.  Static Engle-Granger model of the form of Equations 3 or 4 is estimated 
1959.1-1987.4, then projected forward using actual values of income and the interest rate.  
Aggregate model fitted and projected values are transformed to per household values. 
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Figure 6.  Forecast RMSE 1980-2008 of real money per household as function of forecast 
horizon (K).  Models are initially estimated 1959.1-1979.4, so forecasts begin with 1979.4 +K.  
In projections static models employ actual values of income and the interest rate (yh and r).  Lags 
in the time-series model were truncated to minimize the SIC, with the unconstrained model 
including eight lags.  Lag length for this model was re-specified as the estimation sample was 
extended quarter-by-quarter, with a maximum of 6 lags retained.  Static cointegration model 
forecasts treat income and interest rate (yh and r) as known. 
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Figure 7.  Price-level fitted and ambitious forecast values from inverted money demand model 
(Equation 5).  Forecast values from estimating coefficients 1959.1-1981.3 employ actual values 
of nominal money, income and the interest rate (mh, yh, r). 
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Figure 8.  Forecast RMSE 1980-2008 as function of forecast horizon (K).  K'th quarter-ahead 
forecasts of annualized inflation from static cointegrating (inverted money demand) and pure 
time series models.  Lags in the time-series model were truncated to minimize the SIC, with the 
unconstrained model including eight lags.  Lags retained always equaled one.  A single-lag time-
series model imposing a unit root resulted in slightly larger RMSEs.  Static cointegration model 
forecasts treat mh, yh and r as known. 
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Table 1 
Integration of per-household model variables: 
ADF tests across assumptions and lag criteria. 
    

  Min p-value  
 Levels variables across tests  
 mh  (Log real M1 per household) 0.86  
 yh (Log real GDP per household) 0.24  
 r  (Log 10-year Treasury yield) 0.50  
    
  Max p-value  
 Differenced Variables across tests  
 ∆mh 0.002  
 ∆yh less than 0.001  
 ∆r less than 0.001  
    

Notes:  Before differencing and lag-truncation data is quarterly 1959.1-2008.4. 
Test regressions are constructed with both min AIC and min SIC lag criteria, and 
with and without a constant or constant and trend.  Lags retained varied between 
eight and zero.  Results are as calculated by Eviews, which employs probability 
values from MacKinnon (1996). 
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Table 2 
Johansen Cointegration Tests 
Per household model variables (rmh, yh, r, constant) 1959.1-2008.4 

VAR  
lag criteria 

 
Lags retained 

Trace statistic 
(No cointegrating vectors) 

Probability 
value 

AIC 3 42.64 0.007 
SIC 1 50.13 less than 0.001 

Notes:  Probability values are less than 10% for three through six lags.  The aic and sic lag selection criteria 
were applied to a differenced VAR, which is the correct model under the null of no cointegration.  Results 
are calculated using Eviews, which takes p-values from MacKinnon, Haug and Michelis (1999). 
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Table 3 
Ex-post experimental design: 
5-year trends in the interest rate and real gdp per household 

     

 Sample variance  Correlation 
Sample ∆5yh ∆5r  (∆5yh, ∆5r) 
1959.1-2008.4 2.43 *10-3 8.00 *10-2  -0.209 
1959.1-1981.3 3.33 *10-3 2.64 *10-2  0.017 

Notes:  ∆5x is the twenty-quarter difference xt -xt-20.  Correlation and 
relative variances of ∆yh and ∆r are similar for one- through 40-quarter 
differences. 
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Table 4 
Forecast RMSE for real M1 per household in ambitious and less ambitious exercise: 
Alternative cointegrating estimators. 
 Estimate 1959.1 -1981.3  Estimate 1959.1 -1987.4 

Estimation Method Forecast 1981.4 -2008.4  Forecast 1988.1 -2008.4 
Engle-Granger 0.0701  0.0662 

DOLS 0.1073  0.0926 
FM-OLS 0.0466  0.0464 
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Table 5 
Price-level model from inverted money demand, without imposing unitary price-elasticity  
Johansen cointegration tests  (p, nominal mh, yh, r, constant) 1959.1-2008.4 

VAR  
lag criteria 

 
Lags retained 

Trace statistic 
(No cointegrating vectors) 

Probability 
value 

AIC 7 77.60 0.0001 
SIC 1 97.67 < 0.0001 

Notes: The aic and sic lag selection criteria were applied to a differenced VAR, which is the correct model under the 
null of no cointegration.  Results are calculated using Eviews, which takes p-values from MacKinnon, Haug and 
Michelis (1999).     
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Table 6 
Price-level cointegrating estimates, unrestricted and restricted 1959.1-2008.4 

 p = 0b̂   + 1b̂ mh  + 2b̂ yh  + 3b̂ r 

Estimation 
0b̂  1b̂  2b̂  3b̂  

FM-OLS -5.812 1.017 -0.406 0.390 
(SE) (1.075) (0.041) (0.126) (0.017) 

     

FM-OLS -6.305 impose b1 =1 -0.350 0.399 
(SE) (0.327)  (0.029) (0.017) 

     

Engle-Granger -5.555 1.035 -0.441 0.382 
     

Engle-Granger -6.421 impose b1 =1 -0.337 0.382 
Notes:  As above, FM-OLS employs Bartlett kernel with Newey-West “fixed” bandwidth 
based upon sample size, here equal to 5 quarters). 
 

 
 


