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Abstract 
 
A growing number of empirical papers use Miller-Orr (S, s) money management 
as economic motivation for application of non-linear smooth-adjustment models.    
This paper shows such models are not implied by the Miller-Orr economy.  
Instead, the Miller-Orr economy implies non-standard smooth-adjustment, as 
derived in the neglected (and misinterpreted) work of Milbourne, Buckholtz and 
Wasan (1983).  Remarkably, this function includes a varying weight on the lagged 
dependent variable, capturing static (not dynamic) effects.  Interpretations of these 
apparent dynamics are presented, some of which may be useful in non-monetary 
(S, s) contexts.  Results imply a new agenda for applied smooth-adjustment 
modeling of money. 
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0.  Introduction 

 Non-linear smooth-adjustment models as developed by Terasvirta (1994) have been 

applied to monetary data in a growing number of empirical studies.  Where authors have offered 

motivation from monetary theory for these non-linear methods they have always made reference 

to target-threshold (or trigger-target, or S,s) money management rules based upon inventory 

theory, with most referring to the Miller-Orr variant.  This is natural, as Miller-Orr style money 

management induces complex behavior, and smooth-adjustment models employ very flexible 

non-linear functional forms.   

 The Miller-Orr monetary model is cited as underlying motivation for smooth-adjustment 

econometrics applied to Italian data in Sarno (1999), for Taiwan in Huang, Lin and Cheng 

(2001), to Spanish data in Ordonez (2003), and for US data in Sarno, Taylor and Peel (2003).  

The most detailed argument for this economic rationale is provided in Sarno’s 1999 paper and 

again in Sarno, Taylor and Peel (2003).  Other papers using Miller-Orr as economic motivation 

for smooth-adjustment either refer to or reproduce elements of their argument.  These more 

recent papers include Chen and Wu (2005) who investigate both US and UK data, Lee, Chen and 

Chang (2007) for G-7 data, US data again in Haug and Tam (2007), and then data for Taiwan in 

Wu and Hu (2007) and again in Lee and Chang (2008).1 

 The argument made for a tie between smooth-adjustment and the Miller-Orr economy is 

based upon the fact that under the Miller-Orr rule (and under inventory-theoretic models in 

general) the individual agent allows the balance to wander as driven by random net receipts, and 

adjustment to a target level is triggered only if the balance breaches upper or lower bounds of 

                                                 
1 Via the SCOPUS data-base it was found that the works in this list of papers (claiming a Miller-Orr rationale) were 
in turn cited in eighteen other published papers, nine of these in 2007 through 2008.  Among the eighteen, ten cite 
Sarno (1999) or Sarno, Taylor and Peel (2003). 
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some interval.  It is taken as intuitively obvious that the larger the deviation of holdings from the 

long-run (or average, or equilibrium) value then the more likely it is that many accounts are close 

to breaching their trigger-points, soon to adjust towards the targets.  Thus the deviation of 

holdings from their long-run levels should affect the speed of adjustment towards this long-run, 

with the speed of adjustment increasing with the size of the aggregate deviation.  It is then noted 

that smooth-adjustment functions allow for just such a positive relationship between (on the one 

hand) deviations from equilibrium and (on the other hand) the speed of adjustment.  On that 

basis these papers claim it is intuitively obvious that Miller-Orr money management must imply 

smooth-adjustment.2   

 This paper shows that some of this intuition is correct, but a Miller-Orr economy induces 

important complications not captured in the standard smooth-adjustment functional forms.  

Consistent with the applied literature, the Miller-Orr economy is non-linear, and in a Miller-Orr 

economy standard smooth-adjustment functions can improve on the fit of linear models.  But not 

for the reasons described in this literature.  This paper also shows the standard smooth-

adjustment representations of the Miller-Orr economy are unstable (in a Miller-Orr economy) 

and so forecast poorly.  This instability is not a function of time, so may not be detected when 

applying standard stability tests.  Anticipating the dimension along-which this instability lies and 

specifying a stable non-linear function requires considerations additional to those discussed in 

this monetary smooth-adjustment literature.   

 In clarifying the issue it will be useful to compare the smooth-adjustment intuitions to 

some prior results neglected in the literature.  Milbourne, Buckholtz and Wasan (1983, hereafter 

MB&W) presented rigorous results on the form of aggregate non-linearity implied by Miller-Orr 

                                                 
2 Motivation from buffer-stock models is also mentioned.  A buffer-stock is an inventory, and inventory 
optimization leads to (S,s) rules, so it is not clear that buffer-stock theory is distinct from Miller-Orr type thinking.   
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money management.  But their results are not incorporated into any of these published papers 

applying smooth-adjustment econometrics.3  And their results have generally been neglected.  

The correct non-linear model derived by MB&W is a non-standard smooth-adjustment model 

with a static transition variable.  The use of a static rather than a dynamic transition variable sets 

the correct model apart from the standard smooth-adjustment approach. 

 The fact that rigorous results for the non-linear nature of the Miller-Orr economy 

(derived by MB&W) have been largely ignored for a quarter-century is a puzzle in itself worth 

addressing.  In my view there are two legitimate reasons for the neglect.  First, the discussion in 

MB&W is very brief and does not provide a helpful description of the nature of their 

mathematical results.  Second, their most precise results are buried among other loose 

approximations adopted for empirical application, necessitated by the limited computing power 

available at the time.  Given these handicaps, it is not surprising that non-linear modeling of (S, 

s) economies has been little affected by their work. 

 In response to these difficulties, I present descriptions and intuitive heuristics useful for 

understanding the work of MB&W.  Since (S, s) models have application not only in inventory 

management but also in some (New-Keynesian) price-adjustment modeling, some of the 

interpretation presented in this paper will be more broadly useful.  So along the way I comment 

on which results here are likely to hold in other contexts and which characteristics are unique to 

money. 

 The paper proceeds in six steps.  Section 1 discusses how a Miller-Orr economy implies 

(in the aggregate context) a model with the structure of partial-adjustment (or restricted error-

correction), but with weights or coefficients which vary.  In this initial discussion it will become 

apparent that the probability of portfolio adjustment does matter for coefficient values.  Hence an 
                                                 
3 Although cited by Sarno (1999), the actual results of MB&W are not discussed nor used. 
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aspect of the motivation for application of smooth-adjustment models to money data adopted in 

the applied literature is indeed correct.   

 In Section 2 simulation methods are used to investigate how well standard smooth-

adjustment and related forms can model this varying probability as posited in the monetary 

smooth-adjustment literature, namely that this probability is a function of the difference between 

actual and expected money holdings.  It turns out that such functional forms do no better than 

assuming a constant probability.  This means that if smooth-adjustment models perform well 

empirically, then this is not due to this aspect of the story told in the literature.   

 The difficulty with the story is due to the fact that under aggregation money holdings can 

be larger than average without individual holdings lying closer than usual to the upper boundary 

of the (S, s) interval.  To support intuition for the simulation results I provide a counter-example 

which can easily be extended to a continuum of variations.  This result is the most likely to carry 

over into other non-monetary contexts. 

 In Section 3 I turn to the derivations of MB&W, showing that although their results can 

be seen as implying a highly modified smooth-adjustment model, the form is not the one used in 

the smooth-adjustment literature (to date) and the theoretical interpretation is quite different.  In 

particular the standard smooth-adjustment model is telling a dynamic story.  But although the 

non-linear MB&W model incorporates a lagged dependent variable, it is nonetheless a model of 

comparative statics.  

 That trigger-target (S, s) behaviors at the individual level can imply for an aggregated 

model that lagged money is important, but this lag is not capturing dynamic effects, is perhaps 

the key insight into the nature of a monetary (S, s) economy.  Likewise non-linearity is generated 

in a comparative-statics context.  Once one understands the static basis for non-linearity (and the 
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predictive role of lagged money despite the static context), it becomes possible to understand 

how standard smooth-adjustment forms can approximate a Miller-Orr economy, but for reasons 

not yet discussed in the literature.  Standard smooth-adjustment forms may be approximating 

comparative static effects of the Miller-Orr economy rather than capturing dynamics. 

 This leads in Section 4 to consideration of a different sort of simulated Miller-Orr 

economy, one in which comparative statics are central (and of large magnitude).  There I 

compare standard “dynamic” smooth-adjustment models and a model based upon MB&W.  It 

will turn out that all the models are close competitors when fitting within sample.  In the non-

linear Miller-Orr economy there is little difference in fit between standard smooth-adjustment 

models, the MB&W model, and even linear models.  But smooth-adjustment models equivalent 

to those estimated in the monetary literature (to date) are highly unstable in this Miller-Orr 

economy, forecasting out-of-sample with much larger (mean-squared) errors than those for the 

MB&W model.  For reasons that will become obvious the relevant test of stability is not with 

respect to time, but rather stability with respect to the level of the variable driving the non-

linearity, introduced in the next section. 

 Sections 5 and 6 discuss issues in empirical application of the correct non-linear 

(MB&W) model and present a short empirical application in US quarterly data, comparing it to a 

log-linear model.  Although the MB&W form is much simpler than standard smooth-adjustment 

models, it cannot be applied directly to the aggregate data usually employed in applied studies.  

Suggestions are made for approaching these issues which may be helpful in applying the model 

to data considered elsewhere in the smooth-adjustment literature, such as non-US data or annual 

series for the nineteenth century.  Although keeping this paper to reasonable length requires an 
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abbreviated empirical treatment, I make some effort to outline questions that deserve more 

extensive empirical investigation elsewhere.  

 

1.  Predictors of Money Holdings in the Miller-Orr Economy 

 The Miller-Orr monetary model is one example of the class of inventory-theoretic models 

which take account of the fact that lumpy costs of exerting control imply it is optimal to allow 

the controlled variable to wander as driven by daily events (such as receipts and disbursements, 

or sales and deliveries), exerting control only when the variable breaches some interval.  Such 

optimal control models (sometimes called (S, s) or trigger-target models) are routine in 

engineering and business, and most of the relevant literature long ago migrated to the business 

and optimal-control journals.4  A general model developed in the contemporary economics 

literature is found in Bar-Ilan, Perry and Stadje (2004). 

 A Miller-Orr agent finds it optimal to adopt a two-sided (S, s) rule, allowing the money 

balance to wander randomly within bounds.  This policy of letting the balance wander within 

some interval is optimal given fixed (lumpy) costs of transfers between money and the 

alternative interest-bearing asset.5  In the most common formulation the costs of a negative 

balance are implicitly taken to be greater than the lumpy transfer cost, implying a lower bound of 

zero and a management interval of [0,H].  The standard model familiar to economists assumes 

                                                 
4 Applications can be very complex.  For instance, banks now avoid reserve requirements on about half of freely-
checkable deposits by using software that periodically transfers funds between the depositor’s account and a 
“shadow” or “accounting” money market deposit account (MMDA).  In any month only six withdrawals are 
permitted, hence a seventh has a large and lumpy cost, inducing a non-linear optimal control problem with time-
varying targets and triggers (S,s).  
5 There are counter-examples to optimality in the economics literature which rely on imposition of additional 
conditions.  For instance, the counter-example in Bar-Ilan (1990) relies on imposing a zero balance in a final period, 
implying the holding cost of money in the final period is not only different than in previous periods but must be 
unbounded (undefined) for a non-zero balance.  More general optimality results which make reference to the 
traditional transactions models familiar to economists can be found in Constantinides and Richard (1978), Vickson 
(1985) and Bertola and Caballero (1990). 
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daily net receipts are discrete and independent draws of positive or negative one, but the same 

optimality results hold if the balance follows a symmetric discrete or continuous (diffusion) 

process, and/or under continuous monitoring.  In such cases there is a single optimal target Z = 

H/3.  In these standard formulations the distribution of the balance is triangular, with a mean m = 

4H/9 which one should note is greater than the target Z (=H/3).  The value of the upper trigger 

(H) will depend on the expected yield on the alternative asset and the variance of daily net 

receipts.   Such considerations affect scaling but not the shape of the distribution nor the 

relationships between optimal Z, H and expected holdings.     

 Because individual holdings are random, the empirical distribution of balances for an 

economy of n accounts will differ at any point in time from the probability distribution.  Taking 

Mt as the actual total at time t and denoting the aggregate expectation as M  =nm , then the 

difference Mt - M  is itself random.  Figure 1 shows the triangular distribution and illustrates a 

possible empirical frequency, this distinction is important both for the role of lagged holdings 

and the smooth-adjustment intuition. 

 

1.1  Mean Holdings or “Long-Run Demand” 

 The usual approach to application of Miller-Orr type models uses only expected holdings 

or for an economy of n accounts 

 tM̂  = M .          (1) 

The inventory-theoretic literature often refers to the expectation M  as “long-run demand”, 

“desired holdings” or simply “demand”.  The use of the term “desired” is unfortunate, since all 

levels of holdings within the management interval are optimal, and strictly speaking demand is a 

correspondence not a function.  The use of the term “target” for the value Z is likewise 
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unfortunate, since this value is optimal only infrequently (at the moment of a decision to change 

holdings), and for inventory based models in general the expected value of holdings does not 

correspond to this “target” level.6 

 

1.2  Lagged Money as a Static Predictor 

 The most interesting properties of the Miller-Orr economy derive from the fact that as 

long as an individual balance has not breached the management interval then it wanders 

randomly as driven by net receipts over time.  This implies there is an important alternative to 

using the simple mean tM̂  as a predictor.  In particular, from one observation of money to the 

next a portion of account balances have not been interfered with, having followed a random walk 

without encountering the bounds [0, H].  This implies we could also use an alternative predictor 

based upon the random walk property or 

 '
tM̂  = Mt-1.          (2) 

This might seem to be poor competitor with the mean M , especially since we may be observing 

money infrequently and balances may have wandered far from their previous (time t-1) values.  

However for a closed model these transactions receipts must net to zero, and within the subset of 

accounts not breaching their management intervals many will have transacted mostly with like 

accounts, and thus the net change in holdings for these accounts is close to zero.  The sum of 

holdings from time t-1 to t is modified only to the extent portfolio readjustments have been 

                                                 
6  To have z = m , in the Miller-Orr case requires z =H/2.  This point applies to more general models which have 
two targets (depending on whether the upper or lower bound is breached), each of which differs from mean 
holdings.   
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triggered.7  If there are proportionally few portfolio rearrangements, then '
tM̂  can have a much 

lower error variance than the alternative tM̂ .   

 This strong and static role for lagged money need not carry over to other (S, s) contexts.  

In a closed monetary model each transactions credit implies a balancing debit.  But physical 

inventory models do not generally include an analogous condition, because natural resource 

extraction is not usually counted as a decrease in inventory, and household inventory 

accumulations are also usually neglected.8  And in menu-cost driven pricing models an increase 

in one firm’s price is not taken to imply a decrease in the prices or costs of another.  Hence a role 

for the lagged dependent variable is special to monetary models. 

 

1.3  The Nesting Model and Non-Linear Weighting 

 We have two predictors based upon very different considerations, one relying upon the 

unconditional mean and one which is informative for a subset of accounts.  We can improve our 

forecasts by using a pooled or joint model.  Hence in a Miller-Orr economy a model with lower 

error-variance than (1) and (2) is 

 Mt = bMt-1 +(1 -b)M  +εt.          (3) 

In applications one would date the unconditional mean tM , in which case the error-correction 

form would be (using the traditional equilibrium-correction term Mt-1 - 1-tM ) 

∆M t = (b-1)(Mt-1 - 1-tM  - tM∆ ) +εt .        (4) 

                                                 
7 This also implies the assumption of a random walk in net receipts is not necessary.  But straying from this 
assumption leads to more complex optimization problems than in the Miller-Orr case, and also leads to difficulties 
in satisfying the aggregation condition that a transactions receipt for one agent must be a debit for another. 
8 It might be possible to include this element in a physical inventory model which allows for multiple layers of 
intermediate processing and production, where an increase in one firm’s inventory would be provided by a decrease 
in the inventory held by the supplying firm. 
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But the unique aspects of the Miller-Orr economy are most starkly illustrated if we assume 

management intervals thus M  are constant (implicitly holding the interest rate constant).  

Because the timing of management interval breaches is random, the random component is 

inherent in the Miller-Orr world, and Equation 3 applies even with a constant unconditional 

mean(M ).  And the derivations of Milbourne, Buckholtz and Wasan discussed in Section 3 

make this assumption of a constant mean.  In this case we can remove the time subscript from 

M  ( tM  = 1-tM ) and simply write Equation 3 as 

 ∆M t = (b-1)(Mt-1 - M ) +εt .        (5) 

 Nonlinear models arise as forms which allow this weight to vary.  The smooth-

adjustment intuition relies upon a connection between the probability of asset transfers (breaches 

of [0,H]) and the value of the weighting b.  It is important to note that in partial-adjustment it is 

legitimate to speak of M  as a desired level towards which holdings adjust.  But in a Miller-Orr 

economy random holdings are inherent in individual behavior, there is no single-valued optimum 

and so it is misleading to think of the weight (b) as measuring a speed of adjustment.   

 Put differently, partial-adjustment is a dynamic story.  But in our Miller-Orr economy it 

will be more useful to think of Equations 3, 4 and 5 as employing alternative static predictors, 

despite the presence of a lag of money.  Rather than interpreting a large weight on lagged money 

as indicating slow adjustment, a more accurate heuristic is to think of it as implying lagged 

holdings are informative for a large portion of agents because portfolio readjustments are 

infrequent. 
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2.  The Smooth-Adjustment Interpretation of the Miller-Orr Economy 

 In Figure 1 the actual distribution of accounts is skewed more towards the upper bound 

(H), than is implied by the triangular probability distribution.  This has two implications.  First, 

actual holdings are greater than the mean predicted by the probability distribution i.e. Mt - M  >0.  

Second, since balances are more concentrated near the upper threshold H, from t to t+1 there is a 

greater than usual probability of asset transfers (restoring more balances to Z), and hence a 

greater probability than usual of a reduction in total holdings.    

 The smooth-adjustment story takes a positive difference between actual and mean 

holdings as a signal that breaching the upper bound of the management interval is more likely 

than usual.  Thus the smooth-adjustment intuition leads us to allow the weighting in the above 

equations (b) to vary over time as a function of Mt -M : 

 ∆M t = (bt-1)(Mt-1 - M ) +ε’ t         (6) 

  bt =f(Mt-1 - M ) 

In the monetary smooth-adjustment literature the function f() has been taken to be of two 

possible forms, exponential or logistic, with (respectively) bt = exp[-c2(Mt-k - M  -c3)
2]  or bt = 1 -

1/[1 +exp(-c2(Mt-k - M  -c3))], where c2>0 and we avoid notational clutter by letting the 

coefficients ci have different values across equations.  Most applications also allow for a linear 

(fixed) component and may add an additional scaling factor or bt = b0 +b1* f(Mt-1 - M ).  Some 

studies have investigated other transition variables but have usually rejected them in favor of 

(M t-1 - M ).  In any case this is the transition variable consistent with the intuition claimed to 

motivate a Miller-Orr basis for smooth-adjustment models. 
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2.1  Does the Smooth-Adjustment Story Work? 

 The question is whether knowing the difference between actual and mean holdings tells 

us something about the probability of asset transfers.  Here I take a direct approach, simulating a 

Miller-Orr economy, recording the portion of accounts engaging in transfers (pt) from time t-k to 

t and also recording (Mt-k - M ), where M  = the expectation implied by the triangular 

distribution.  I then try to model pt as various functions of (Mt-k - M ).  If k >1 then values are 

recorded every k’th period.  For given (Z, H) the implied weight on lagged money in Equation 3 

decreases as the time between observations (k) increases.9 

 In the simulations there are 20,000 accounts which are randomly paired each period and 

receive a debit or the balancing credit.  An important aspect of such a model is that the timing of 

management interval breaches (or asset reallocations) will be random and thus in the aggregate 

unbalanced.  Without Central Bank commitment to provide liquidity as needed, it is not possible 

to hold interest rates and thus management intervals constant.  So to the extent portfolio 

readjustments are triggered, the simulations implicitly treat any imbalances as met by Central 

Bank commitment to stabilizing interest rates.  This implies aggregate holdings vary randomly 

over time. 

 The simulations are long enough to generate one-thousand observations (regardless of 

observation frequency k) of Mt and Mt-k for a given z and thus for a constant M .  This was done 

for all combinations of k = 1, 2, 3, 4, 5, 10, 15, 20 and z = 5, 10. Results were similar in all cases, 

in the case presented (k = 10, Z = 10) the average estimated value for the weight on lagged 

money in a regression of Equation 1 is about 0.8.10  

                                                 
9 This is discussed in Section 3. 
10  Programs and resulting data files are available upon request. 
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 Table 1 shows the results of attempts to model pt using various forms related to the 

smooth-adjustment story. The second column from the right shows the results of a test for 

restricting the model to a constant, showing the probability value of a simple ANOVA F-statistic.  

Since these are large samples, a very small change in the model variance (restricted versus 

unrestricted) could still at conventional significance levels lead to rejection.  So in the last 

column on the right I display the coefficient of variation for the models.  Since this (R2) is zero 

when the constancy restriction is imposed, it is a measure of the gain of the non-linear model 

over the linear model. 

 The first row of Table 1 shows the results of attempting to model the portion of accounts 

breaching the management bounds using a smooth-exponential model.11  The probability value 

for imposition of a constant relationship is 0.0582, implying rejection for a test size of ten-

percent, but not for a size of five percent.  Given the large sample it makes sense to choose a test 

size smaller than conventional values, i.e. a size well under five-percent.  More to the point, in 

the last column we find the R2 of this smooth adjustment form is 0.00748, well under one 

percent.  Very little of the variation in the rate of portfolio adjustment (pt) is explained by this 

smooth-exponential function. 

 The second row of Table 1 shows results for a smooth-logistic function.  Here we can 

accept the restriction to a constant, the probability value for the implied restriction being 0.388.  

The third and fourth rows investigate alternatives to the standard smooth-adjustment forms, 

attempting to model pt as a function of the absolute value of the transition variable (Mt-1 - M ).  

Again the cost in reduced fit when reverting to the intercept-only model is small, and the implied 

restrictions are not rejected. 

                                                 
11  I do not impose sign restrictions. 
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 This aspect of the smooth-adjustment intuition has failed,  knowing Mt-1 ≠ M does not 

help us predict the probability of adjustments to target levels.  What then is wrong with the 

smooth-adjustment intuition?  The answer is simple, and is illustrated in Figure 2.  As in Figure 

1, here actual holdings are greater than M .  But the probability of near-term breaches of the 

interval is not greater than usual, because the actual density of balances near the bounds 0 and H 

is not greater than usual.  In fact the portion of balances near the upper bound is lower than 

usual, implying a lower probability of reductions in balances despite average holdings greater 

than the long-run mean (M >M ).  For an individual balance it is correct that mt - m  >0 implies 

mt is closer to H than usual.  But this does not hold for an aggregate distribution.  It is easy to 

imagine a continuum of similar counter-examples with varying empirical distributions.  The 

simulations tell us that the sort of distribution illustrated in Figure 1 is no more likely than that 

illustrated in Figure 2. 

 In these simulations we were holding the management interval width (0, Z, H) constant, 

so any variation in the rate of portfolio adjustment was due to short-term dynamic fluctuations in 

the empirical density away from the theoretical distribution, as posited in the smooth-adjustment 

literature.  It turns out that although this aspect of the smooth-adjustment intuition is not correct, 

there are other reasons for a gain in moving from linear to smooth-adjustment models.  But to 

discuss these reasons it will first be helpful to examine the results of MB&W. 

 

3  Milbourne, Buckholtz and Wasan:  Nonlinear Aspects of the Miller-Orr Economy 
 

 MB&W formally derive the optimal relative weighting (b or bt in Equations 3-6) as a 

function of the width of management intervals, the variance of daily net receipts, and the time 

elapsing (k) between observations of money.  For our purposes the most useful result is their 
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Equation 20.  We will be holding constant the variance of daily net receipts and the elapsed time 

between observations of money (respectively σ2 and t in MB&W).  Folding constants into one 

term and also taking advantage of the fact that M =nm  = n4h/9 (they denote the upper threshold 

with the lower case “h”), then we can rewrite their result for the weighting as 

 
 b = exp(c0/ M 2)  c0 < 0.        (7) 

 

3.1  Interpreting the Milbourne, Buckholtz and Wasan Model 

 It is important to note that in Equation 7 I have not given mean or long-run holdings (M ) 

a time subscript, as the problem solved by MB&W takes the management interval (0, Z, H) and 

thus long-run holdings as a given.  Thus their result is static from two perspectives.  Their task is 

a comparative statics exercise in the sense that Equation 7 shows how the optimal weighting will 

differ in Equations 3-6 across separate regimes in which long-run demand is constant but takes 

on different values across the regimes.  Their result does not tell us about the transitions between 

regimes, for instance it does not tell us about the effects occurring during a reduction in the upper 

threshold H (say in reaction to higher interest rates) as the process of compressing the 

distribution of Figure 1 piles probability mass at the target (Z).  Such dynamics are complex and 

transitory, and are not addressed by Equation 7 nor by MB&W.12 

 Their result is static in a second respect.  If Equation 7 was a smooth-adjustment function 

then the right-hand side transition variable would be the dynamic difference Mt-1 - M .13  Due to 

the random nature of Miller-Orr holdings this varies from moment to moment even when 

                                                 
12 Greene (2001) explores the very complex nature of Miller-Orr dynamic transitions and develops modifications of 
the non-linear comparative-static MB&W model to allow for these dynamics. 
13 Another possibility in smooth-adjustment modeling is to use a transition variable formed as changes of some of 

the variables determining demand, if not ∆ M  then changes in interest rates or changes in income.  In this case the 
characterization of smooth-adjustment as dynamic and the MB&W model as static still applies. 
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management intervals and M  are constant.  So smooth-adjustment implies a varying coefficient 

(b) when management intervals and long-run demand are constant.  But Equation 7 employs the 

level of long-run demand and if long-run demand is constant then the equation and the MB&W 

results imply a constant weighting. 

 Unfortunately the discussion in MB&W can be unhelpful.  Their use of terms is entirely 

proper if one defines short-run adjustment as being involved anytime a model includes a lagged 

dependent variable.  But as we have seen above their mathematics assumes away most of what 

would usually be considered dynamic, and so “comparative-statics” is a more useful label.  If 

one reads carefully one can tease out some of this static-dynamic distinction, for instance they 

state that “this view of money holdings is different from the usual stock adjustment view” and 

they refer to the distribution of holdings “whose average is the ‘desired’ level of money 

holdings.”  Yet at times they refer to their results as regarding the “short-run” and “adjustment”. 

 Also, their theoretical section essentially ends with Equation 21.  The later equations are 

motivated by an effort to take shortcuts for empirical application.  For instance they abandon the 

exponential form implied by their results, moving to a simpler Taylor series approximation.  

Such simplifications are understandable given the computing power available at the time, but are 

unnecessary today.  They also assume some proxies for the variance of daily receipts and for 

portfolio adjustment costs which deserve more careful examination.  So those contemplating 

empirical applications will stand on the strongest theoretical ground if they take inspiration from 

MB&W’s Equations 20 or 21. 
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4.  Smooth-Adjustment and Comparative Statics 

 The work of MB&W implies non-linearity emerges in the comparative statics context, 

with differing regimes of management interval width.  Although the results above show that 

smooth-adjustment cannot be justified on the basis claimed in the literature, this does not rule out 

the possibility that smooth-adjustment can well approximate a Miller-Orr economy with 

differing regimes, a factor not included in the simulations above.  There is the additional 

consideration that smooth-adjustment functions are very flexible forms, and the form derived by 

MB&W relies upon truncation of some expressions and is more restrictive than standard smooth-

adjustment.  Thus it is of interest to compare smooth-adjustment functions to the MB&W form in 

a comparative statics context. 

 This section examines the performance of linear, smooth-adjustment, and the MB&W 

forms in a Miller-Orr economy in which management intervals and mean holdings differ over the 

sample, making comparative static effects operative.  Again the simulated economy will consist 

of 20,000 accounts.  But here there are 14 regimes of differing management intervals with 

parameters chosen so the implied weight on lagged money (b or bt of Equations 3-7) varies as 

(approximately) 0.30, 0.35, 0.40, ...0.95.  In order to achieve this design I make two related 

changes to the previous simulations.  Net receipts are drawn from a normal (0,1) distribution, and 

parameters Z and H are allowed to equal non-integer values.14  For each of the fourteen regimes I 

record ten-thousand observations of aggregate M, Mt-k, and M t, for a total of 140,000 

observations. 

 

                                                 
14  This is equivalent to assuming balances follow a diffusion process.  As shown in MB&W, this maintains the 
mean (and optimality results) of the original discrete framework of Miller and Orr.  
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4.1  Within-Sample Fit, Stability and Out-Of-Sample Forecasting 

 All of the competing models are variations of  

 Mt = btMt-1 +(1 -bt) M t +εt    bt =f(.)     (8) 

where M is not estimated but is the population value 20000(4H/9).  In the linear model bt is a 

constant to be estimated directly.  As in standard practice the smooth-adjustment models are 

specified to nest the linear case.  For the smooth-exponential model f(.) is replaced by  

c0 +c1exp[-c2(Mt-k - tM  -c3)
2], while for the logistic versions f(.) is replaced by  

c0 -c1/[1 +exp(-c2(Mt-k - tM  -c3))].  For the MB&W model f(.) is replaced by exp(c0/
2
tM ).15  The 

coefficients (ci) are estimated via simple non-linear least-squares.  It is helpful to recall that Mt 

varies randomly from observation to observation, but tM  is constant (via constant management 

interval width) over sub-samples of 10,000 observations. 

 

4.2  Within-Sample Fit 

 The second column of results in Table 2 shows the regression standard errors when fitting 

the models in the half of the simulated data in which management intervals (and mean holdings) 

are larger (b = 0.65, ...0.95).  Notice the linear model SER of 365.43 a bit larger but very close to 

the smooth-adjustment model SER’s of 364.00 and 364.57 and also close to the SER of the 

MB&W model (359.16).  In fitting within sample the linear model is able to approximate 

comparatively well even though we know coefficients vary.  Likewise there is little to 

distinguish among the non-linear model standard-errors. 

 

                                                 
15 Where for notational simplicity coefficients ci represent different values across equations. 
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4.3  Forecasting and Stability in the Miller-Orr Economy 

 In these large samples (70,000 observations) one could reject constant model coefficients 

even if coefficient variation is too small to be of importance.  As discussed in DeGroot (1986, 

pp496-7) one way to deal with this it to decide how small a difference matters, and adjust the test 

size to avoid rejection of differences judged to be small.  But unless one knows the results ahead 

of time, this requires ex-post examination of estimated variances in order to pick the useful test 

size. 

 I take a more direct approach.  Since all the models fit nearly as well within a sample of 

varying regimes, instability will be important only if one is forecasting for a regime not included 

in the estimation sample.  And we can obtain a measure of the importance of such instability by 

fitting and forecasting in distinct sets of regimes.  Thus forecasting “out of sample” will give us a 

measure of the importance of any instability. 

 The first column of results in Table 2 shows the results of this sort of forecasting 

exercise.  In particular, we are forecasting for the same set of data used to estimate regression 

standard errors in the second column.  But the forecasts here use coefficients as estimated in the 

other half of the data, data in which Z and H have taken values outside the range of those within 

the data being forecast.  In particular I estimate coefficients over the 70,000 observations in 

which (Z, H) vary to imply an optimal linear weight on lagged money that varies as 0.30, 0.35, 

...0.60, and then forecast over the next 70,000 observations in which (Z, H) imply a linear weight 

varying as 0.65, 0.70, ...0.95.  Thus the sample is divided not by time, but by mean holdings M . 

 For the linear model the forecast RMSE is 467.68, a bit smaller than that for the smooth-

exponential model of 472.05, but larger than the RMSE of 452.84 of the smooth-logistic model.  
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But the forecast RMSE for the MB&W model is substantially smaller at 359.45.  This is a full 

twenty-five percent less than that of the smooth-logistic model, which is the nearest competitor. 

 Perspective on the difference between estimation and forecasting results is given in the 

second and last column of Table 2.  The second column shows the SER of each model when re-

estimated within the forecast subsample.  The last column displays the difference between each 

model’s forecast RMSE and the fitted standard-error of regression, as a percentage of this SER.  

For the linear and smooth-adjustment models this difference is over twenty-five percent.  But for 

the MB&W model it is a mere 0.08 percent.  Thus from a practical or “economic” perspective 

the MB&W model is stable, forecasting (out of the estimation sample) with average squared 

errors of about the same size as implied by the fitted model.   

 These simulation results confirm the validity of the MB&W derivations.  They also imply 

for a Miller-Orr (S, s) economy that models will be distinguished in forecasting and stability.  

When estimated within sample a linear model fits nearly as well as the correct non-linear model.  

And since any linear model coefficient variation is a function of long-run demand (in the 

language of smooth-adjustment, the transition variable is static), the instability of linear models 

should be tested as a function of this variable rather than with respect to time. 

 

 

5.  Issues in Empirical Application of the Static-Transition Smooth-Adjustment Model 

 There are two novel aspects of the MB&W model which create issues not encountered in 

applications of standard models (linear or non-linear).  First, to correspond to the underlying 

theory, the data must be scaled by some measure akin to measuring (real) money per economic 

agent.  Second, (and for the same reason) the regression model will not employ logged variables, 
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although the form of the function determining M  (long-run demand) will be log-linear.  These 

two characteristics introduce new and/or magnify other issues in application.   For one, evidence 

accumulated elsewhere about the order of integration of monetary data is not directly applicable 

to the scaled data employed here.  Second, the complex dynamics incorporated into log-linear 

models via distributed lags of underlying variables (such as differenced interest rates and 

income) will not have a natural counterpart in the applied MB&W form.  Third, the dependent 

variable of the applied MB&W model will not directly compare to models written in logs.  The 

remainder of this section introduces these issues in some detail. 

 

5.1 Scaling and Integration 

 The functional form derived by MB&W and the simulations presented above hold the 

number of agents constant, so a change in aggregate money is driven by a change in money per 

agent.  Likewise an increase in long-run holdings is driven by an increase in the width of 

management intervals (0, H), which drives the non-linearity.  But in empirical data population 

increases, so an increase in aggregate holdings need not be driven by such behavioral changes, 

and so need not imply a change in the weight given lagged money in predicting current money.   

 A partial solution would scale money on a per capita basis.  Although an improvement 

over no scaling at all, in many applications this will distort the correct timing.  There can be a 

twenty year lag between birth and becoming a significant manager of money and income.  This 

will be a factor in any economy with variable birth rates.  So in the application below I scale on a 

per-household basis.  The measure of households is annual, so I interpolate quarterly estimates. 

 Given the large number of studies applied to non-US data or to nineteenth-century data, 

other suggestions for scaling may be useful.  In the USA the number of households is simply the 
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number of occupied housing units.  In some countries it may be possible to model this as a 

function of construction and occupancy data.  An alternative to households would be the adult 

population or better, the adult population minus the number of married couples.  If this data is 

not directly available, an indirect approach could take flow data on births, death rates by age, and 

net immigration and then integrate to the implied adult population, with the integration constant 

estimated via knowledge of the adult population at some point within the time period covered.  

But for the US data used below, the data on households is available for the entire period covered 

(1959-2007). 

 Ignoring time-series issues, the applied MB&W model will be written as a varying-

weight partial-adjustment model (Equation 8), employing real money per household.  Scaling per 

household may change integration properties.  For instance, if logged money per household was 

I(0), and logged households was I(1), then logged aggregate money equals the sum and would be 

I(1).  In this case scaling per household would remove the unit root.  Use of data scaled in this 

manner is not common practice, so for this data it will be of interest to test for unit roots in levels 

and differences.  

 The Miller-Orr model, and other inventory-theory based models such as in Baumol 

(1952) or Tobin (1956) imply that long-run money is a log-linear function of the interest rate and 

variables measuring flows such as income.  Below this will be taken to suggest cointegration 

between logged real money per household, logged real GDP per household, and a logged interest 

rate.  Because the aggregates are scaled, the results of cointegration tests may differ from that 

found for non-scaled data, and so these are also of interest. 

 There are additional issues which may matter in some empirical applications but are not 

treated here, in part due to space limitations and in part because they appear to be unimportant in 
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the data used.  Although inventory based models such as Miller-Orr imply a log-linear form for 

the cointegrating relationship, the MB&W form implies the dependent variable and the error-

correction term will not be log-linear.  Thus if the equilibrium relationship is posited as m* = b0 

+b1y +b2r, then letting M* =exp(m*) the MB&W error-correction term will be (Mt-1 -M* t-1), not 

the log-linear (mt-1 -m
*
t-1).  In principle the properties of these will differ, and the lack of a unit 

root in (mt-1 -m
*
t-1) does not imply (Mt-1 -M* t-1) is I(0), likewise for ∆m and ∆M.  

 But in the application below levels of M are large enough and the differenced variables 

are small enough that the two formulations have similar properties.  In fact the two differences 

are highly collinear.  Using *
tm̂  as estimated from an Engle-Granger static levels regression, 

regressing (mt -
*
tm̂ ) upon (Mt -

*
tM̂ ) (omitting a constant) yields an R2 of over 0.98.  And 

regressing ∆m upon ∆M (again omitting a constant) yields an R2 of 0.97.  Given this colinearity, 

it should not be surprising that the results of tests for unit roots are similar for these logged and 

non-logged variables.  Recently Corradi and Swanson (2006) proposed a formal test for choosing 

between logged and non-logged measures of potentially integrated variables.  But they find their 

test requires at least 250 observations to avoid significant size distortions.  Consistent with the 

collinearity just discussed, when they apply their test to US M1 the results do not favor one 

measure (logged or non-logged) over the other. 

 

5.2 Dynamics and Interpretability   

 Further complications are induced by the fact that the model of a Miller-Orr economy 

will employ non-logged levels of actual and long-run money (M and M*), but the equilibrium or 

long-run M* is a log-linear function of underlying variables such as interest rates or income. 
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 To fix ideas, consider bi-variate and tri-variate cases of cointegration amongst logged 

variables, and corresponding distributed-lag formulations of (logged) error-correction models, 

ignoring (excluding) lags of the dependent variable.  For the bi-variate case, suppose m is 

cointegrated with y and the long-run relationship given by m* = y.  Then the equilibrium-

correction form with distributed lags of ∆y can be written equivalently as including distributed 

lags of ∆m*, or ignoring error-terms 

∆m = -b0(mt-1 -m
*
t-1) +∑ ∆ i-t i yα  = -b0(mt-1 -m

*
t-1) +∑ ∆ *

i-t i mc ,    (9) 

where αi = ci.   

 With more than two variables the same interpretation is possible, but with an additional 

layer of complexity.  Suppose now that m is cointegrated with y and r, with long-run relationship  

m* = y +r.  Then the equilibrium-correction form with distributed lags of ∆y and ∆r can still be 

written as including distributed lags of ∆m*.  Again ignoring error-terms 

∆m = -b0(mt-1 -m
*
t-1) +∑ ∆ i-t i yα +∑ ∆ i-t i rb  = -b0(mt-1 -m

*
t-1) +∑ ∆ *

i-t i mc +∑ ∆ i-ti yd . (10) 

 

If in Equation 10 di = 0, then the short-run impact of changes in y and r is the same as their 

impact on the long-run relationship.  If di ≠ 0, then αi = ci +di and bi =ci, and the relative impact 

of changes in y and r differs from that implied by the long-run relationship, here assumed to be 

unitary.  Unless for some lags αi or bi equal zero, including distributed lags of ∆y and ∆r is 

equivalent to including distributed lags of the differenced equilibrium ∆m* , along with one (only) 

of the underlying variables (∆y or ∆r). 

 The above interpretations are made possible by the fact that both the long-run 

cointegrating relationship and the error-correction model are log-linear.  But this correspondence 
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does not hold for the MB&W form.  Again for notational convenience let the following 

coefficients differ from values in other equations.  Then an applied error-correction form based 

on Equation 8 is 

∆M t = (bt-1)(Mt-1 -
*

1-tM  - *
tM∆  + *

i-ti Mc ∆∑ ) ,     (11) 

where for now we can ignore the determinants of bt. 

Here in this error-correction version of the MB&W partial-adjustment form the change in the 

long-run ( *M∆ and thus in the long run ∆M) does not equal a linear combination of ∆y and ∆r, 

nor of non-logged ∆Y and ∆R.  One could retain *
i-ti Mc ∆∑ , and append lags of ∆y and ∆r, but 

there is no meaningful interpretation of the relationship between the non-logged dependent 

variable and differences of the individual variables (y, r). 

   Thus in the empirical implementation of the MB&W model I will restrict dynamics to 

appending distributed lags of the dependent variable and of lagged changes in the long-run 

equilibrium (∆M*).  This makes the empirical MB&W model less complex in its distributed lags 

than a log-linear model, but more complex in its functional form.    

 Finally, since the dependent variable of the MB&W model is not a difference of logged 

levels, the fitted values and forecasts will not compare directly to standard models.  The errors 

being minimized in estimating the applied MB&W model are not the errors for logged money.  

This difficulty is unavoidable.  But when comparing the MB&W form to standard log-linear 

forms, I think it reasonable to handicap the non-linear model, since non-linear estimation has its 

additional costs.  So when comparing the MB&W model to log-linear models, I will transform 

the MB&W model predicted values to logged values.  Although placing the MB&W model at a 
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disadvantage, this seems preferable to comparing via a transformation of values from the log-

linear models. 

 

6.  An Empirical Demonstration of the MB&W Model 
  
 This section presents empirical results for the implementations of the Miller-Orr 

motivated non-linear model discussed above, in quarterly US data 1959-2007.  This section also 

compares the non-linear models to standard log-linear models.  Money is measured as real M1 

per household (denoted “M” or if logged as “m”), with income measured as real GDP per 

household (denoted “Y” or “y”).  As described in footnote 4, official figures for M1 are fictitious 

after 1993, ignoring a large portion of freely checkable (and insured) deposits as “off the M1 

balance sheet”.  The Board of Governors is estimating these misreported M1 balances monthly, 

and their estimates are added to official M1 in the measure used here.16  These adjusted figures 

for M1 are nearly identical to those of Cynamon, Dutkowsky, and Jones (2006), periodically 

updated  and published as series M1RS at their website (http://www.sweepmeasures.com).  

Long-run holdings of real M1 per household (corresponding to M in the theoretical MB&W 

derivations) are taken to be a log-linear function of real GDP per household (y) and the yield on 

Treasury Bills of 10-year maturity (r).   

 

6.1 Integration and Cointegration 

 Table 3 shows the results of ADF tests for the integration properties of the logged per 

household data in levels and first-differences.  As described above, the properties of differenced 

non-logged money are also relevant, but in this context will be very similar to differences of 

                                                 
16 This data is difficult to find using the data pages of the Board and District Banks, but as of October 2009 could be 
found at http://research.stlouisfed.org/aggreg/swdata.html. 
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logged values.  For each variable separate tests are conducted with and without a constant in the 

test regression, and also with a constant and time trend, corresponding to three separate test 

assumptions.  In addition, test regression lags are selected via both the Schwarz and Akaike 

criteria, for a total of six tests for the null of a unit root applied to each variable.   

 Rather than reporting all the individual tests, for each levels variable Table 3 reports the 

minimum probability value across the tests.  For the differenced data the maximum probability 

value is reported.  Thus the nominal p-value reported for the levels data is “cherry picked” in a 

manner that leans towards rejection of a unit root (actual test size is greater than the reported p-

value), while the reported results for the differenced data are biased towards accepting the unit 

root (actual test size is less than the reported p-value).  Nonetheless a unit root is clearly accepted 

for the variables in levels (with a lowest p-value of 0.25), while a unit root is rejected for the 

differenced variables (with a largest p-value of 0.005).  Although the use of aggregates scaled on 

a per household basis is not standard practice, the results of Table 3 imply these variables have 

the properties usually encountered in monetary and income aggregates. 

 Table 4 displays Johansen cointegration test results for the null of no cointegrating 

relationships (versus more than zero) among logged real M1 per household, logged real GDP per 

household, and the logged yield on Treasuries of 10-year maturity.  Under the null the model is a 

differenced VAR, so lag selection is done in this differenced VAR (no levels included), in which 

case the AIC criteria selects two lags, while the SIC selects one lag.  So results are displayed for 

both one and two lags.  Under both lag-selection criteria Table 4 shows that a null of no 

cointegrating relationships is rejected, with (nominal) probability values of well under one-

percent.  These variables are used in the Engle-Granger regression of the next paragraph. 
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6.2  Whole Sample Estimation of MB&W and Log-Linear Error-Correction Models 

 The models estimated below employ the same estimates of the long-run equilibrium, 

estimated via an Engle-Granger static levels regression.  This ensures that any differences across 

models will be due to the differences in functional form.  For this quarterly data 1959.1-2007.4 

the levels regression yields 

*
tm̂  =  6.102 +0.360yt -0.394rt        (12) 

where as above “m” denotes the log of real M1 per household “y” denotes the log of real GDP 

per household, and “r” denotes the log of 10-year T-bill yield.  For use in the MB&W model *
tm̂  

is used to define *
tM̂ =exp( *

tm̂ ). 

 Two versions of the MB&W model and three versions of the log-linear error-correction 

model will be estimated.  Starting with the MB&W formulation, the most unrestricted model will 

add lags of the dependent variable to the comparative statics model of Equation 11, with the 

equilibrium-correction coefficient replaced by the varying and non-linear ( )2*
t0 )M̂/(cEXP .  I treat 

the weighting of all lags of *
tM̂∆ as non-constant, since all are relevant for the average distance 

of actual money from the long-run equilibrium *tM̂ .  But the specifications incorporate linear 

combinations of the lagged dependent variable, to ensure it is possible to create a specification 

with uncorrelated errors (a linear measure): 

∆M t = ( ( )2*
t0 )M̂/(cEXP  -1)(Mt-1 -

*
1-tM̂  - *

tM̂∆  +∑
=

∆
0 i

*
i-ti M̂b ) +∑

=
∆

1 i
i-t i Md  +εt  (13) 

 A second version of the MB&W applied model imposes the restriction b0 =0, forcing the 

weighting of *
tM̂- ∆  in Equation 13 to equal the weighting of the error-correction term.  This 

implies the partial-adjustment form of the comparative-statics model holds as in Equation 4, in 
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the limited sense that the model is equivalent to omitting the contemporaneous change in *
tM̂ and 

writing the equilibrium-correction term as Mt-1 -
*
tM̂ , since (Mt-1 -

*
1-tM̂  - *

tM̂∆  ) =  (Mt-1 -
*
tM̂ ). 

 Three versions of a log-linear model are estimated, with two of the versions restricted to 

include only the variables allowed the MB&W forms.  Again letting coefficients (and errors) 

differ across equations, the unrestricted log-linear model is 

∆mt = -becm(mt-1 -
*

1-tm̂  - *
tm̂∆ ) +∑

=
∆

0 i

*
i-ti m̂b  ∑

=
∆

0 i
i-ti rα +∑

=
∆

1 i
i-t i md  +εt.    (14) 

 Restricting Equation 14 to omit the lags of the interest rate (αi =0) forces it to include 

only variables corresponding to those of the least restrictive MB&W form of Equation 13.  

Additionally imposing b0 =0 forces the use of only variables included in the more restricted 

version of the MB&W model. 

 Tables 5 and 6 display full-sample estimation results for the MB&W and log-linear 

models, with lags selected to minimize the AIC.17  The model versions in the first two columns 

of the two tables correspond in the sense that (before lag selection) they employ the same 

variables.  The final column of Table 6 includes the unrestricted log-linear model, which has no 

equivalent among the MB&W forms due to including differences of the interest rate (∆r) as 

dynamic variables, apart from differences of the estimated equilibrium.  

 Starting with the first and second row of results in each table, minimizing the AIC results 

in retaining the same number of lags (two) in the two equivalent MB&W and log-linear models, 

with a total of five or six coefficients to estimate.  But the otherwise unrestricted log-linear 

model of Table 6 retains three lags.  Since this model includes separate changes of the interest 

                                                 
17 Initially I included six lags, which given the original data starting in 1959.1 meant starting estimation with 1960.4.  
Across models with this starting date at most two lags were retained, so for the results reported the sample started 
with 1960.1, with three lags included before selecting for lag-length. 
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rate in addition to the variables of the other models, this results in twelve estimated coefficients, 

twice that of the other models.   

 The third row of Tables 5 and 6 displays the (absolute) value of the estimated weight on 

the equilibrium-correction term.  In the MB&W models this varies, so the mean and (sample) 

range is displayed.  The mean values for the two MB&W models (0.036 and 0.042) is close to 

that of the corresponding log-linear models (0.037 and 0.044) and the unrestricted log-linear 

model (0.035).  But for the MB&W models the weight varies between as little as 0.018 (for the 

first MB&W form) and as much as 0.079 (for the second MB&W form).  More detail on the 

varying MB&W coefficient weights is found in Figure 3, which displays time series for each of 

the estimated models.  Because this weight is a function of long-run holdings, it follows a path 

very similar to the path of monetary velocity. 

 The fourth row of each table displays the coefficient for the contemporaneous change in 

the long-run equilibrium, as it differs from the equilibrium-correction weighting needed to imply 

partial-adjustment from mt-1 to contemporaneous (*tM̂ ).   If partial-adjustment holds, then b0 =0.  

For the models of the first column (which include equivalent variables), the mean value for the 

MB&W model (Table 5) is close to zero in magnitude and close to the fixed value displayed in 

Table 6 for the log-linear model (respectively 0.030 and 0.034).  But for the unrestricted log-

linear model of the last column of Table 6, the estimate is a much larger 0.444.  The fifth row 

displays the sum of estimates for the remaining lagged changes in *M̂ .  Again for the restricted 

models this is closer to zero than for the unrestricted log-linear model.  The mean values for the 

MB&W models of Table 5 are 0.131 and 0.110, while for the equivalent log-linear models are 

respectively 0.148 and 0.144.  But for the unrestricted log-linear model the value is farther from 

zero, in this case -0.400.  So in the unrestricted model the dynamic reaction to changes in the 
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long-run equilibrium is stronger and more complex than in the restricted models.  As is about to 

discussed, b0 =0 is rejected in the log-linear models but accepted in the MB&W model.  So the 

log-linear model selects for more complex dynamics than the MB&W model. 

 In Tables 5 and 6 the third-row from the bottom displays the probability value of log-

likelihoods tests for restrictions imposed, as against the least restricted version.  In Table 5 the p-

value for b0 =0 is 0.167, so for conventional test size this restriction is accepted.  The same row 

of Table 6 displays tests for the restrictions, against the un-restricted model of the far right 

column.  Here the p-value for omitting separate changes of the interest rate (αi =0) is under 5% 

(0.021).  The model of the second column includes variables equivalent to those of the more 

restricted MB&W model (αi = b0 =0) and here the p-value is again under 5% (0.017).  Not shown 

are estimation results for the log-linear model including lags of the differenced interest rate 

(unrestricted αi ) but imposing b0 =0.  This was also rejected, with a p-value of less than one 

percent.  And testing a null of αi = 0 or αi =b0 = 0 (but retaining three lags as in the unrestricted 

model) against the model of the far-right column yielded p-values of well under five-percent. 

 Finally, the last row of Tables 5 and 6 displays the SER of the models.  For comparison 

to the log-linear models, the fitted values of the MB&W models are transformed to logged 

equivalents, as described above and in the notes to Table 5.  Since restrictions of the log-linear 

model are rejected, and restrictions of the MB&W model are accepted, consider these two 

models (the far right columns of each table).  The log-equivalent ser of the restricted MB&W 

model is 0.00674, a bit larger than the linear model ser of 0.00669.   
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6.3  Stability and Forecasting 

 In the simulation results, we found that linear and non-linear regression models of a 

Miller-Orr world would have very similar fits within-sample.  The difference between the 

modeling approaches was found in stability and forecasting, particularly if the sample was 

divided with respect to the level of long-run holdings (here *M̂ ).  Hence this section compares 

stability and out-of-estimation-sample forecasting.  

 Although restrictions were rejected, I continue to show results for all the log-linear 

models for two reasons.  Not all nominal p-values were less than one-percent, and statistic 

distributions are asymptotic, so there is room for differences of taste and judgment.  And for 

forecasting purposes simpler models are often preferred.18 

 Table 7 displays the results of stability tests when the sample is split with respect to 

whether the estimated long-run *tM̂  (of Equation 12) is greater or less than its median.  Here I 

display simple analysis-of-variance F-tests, and also likelihood-ratio tests which require adding 

non-linear terms to each model, replacing each coefficient b with the term b*bD, where D is a (0, 

1) dummy splitting the sample. 

 For simple F-tests, the p-values for both versions of the non-linear MB&W model are 

well over ten-percent, 0.414 and 0.254 for both the unrestricted and restricted models of Table 5.  

Results for the log-linear models depends upon tastes in test size.  The first linear model (third 

row) is most relevant, because the restrictions of the other log-linear models were rejected.  For 

this model the F-test p-value is 0.085, over five-percent but under ten percent.19   

                                                 
18 In this application it turns out that lags selected to minimize the more parsimonious sic results in models with 
larger forecast errors.  
19 Recall that this model retains twelve variables, in contrast to the five or six variables of the other models (both 
linear and MB&W). 
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 In Table 7 results of the likelihood-ratio tests are similar, except that p-values are closer 

to zero.  This does not matter for the non-linear MB&W models, where p-values are still well 

over ten-percent (0.353 and 0.209) for the MB&W models of Table 5.  But the p-value for the 

unrestricted linear model is now 0.050.  So stability is clearly accepted for the non-linear 

MB&W model, but depending upon tastes could be rejected for the unrestricted log-linear 

model. 

 Table 8 displays analogues of the simulation study of Table 2.  Each model is estimated 

over one half of the sample, with estimated coefficients used to generate forecast values for the 

remaining sample.20  But as in Tables 2 and 7 the sample is split with respect to the level of long-

run demand ( *
tM̂ ), not time.  Comparing forecast results to the results of re-estimation in the 

forecast sample can be seen as a measure of the economic magnitude of any instability, although 

in these small samples this is convoluted with estimation error.   

 The first two rows of Table 8 show results for the two versions of the MB&W model.  

The forecast RMSE of the two are very similar, 82.11 for the least-restricted and 82.41 for the 

more restricted version.  Moving to the second column of results, when the MB&W models are 

re-estimated over the forecast sub-sample, the standard errors of the models are 80.34 and 79.97, 

again very close.  More importantly, the difference between the forecast RMSE and the re-

estimation SER is only 2.2% and 3.1%.  This is larger than the difference found in Table 2, but 

of course estimation in Table 2 was over samples of 70,000 observations, and in a simulated 

world of literal Miller-Orr structure. 

 The last three rows of Table 8 display the forecast and re-estimation results for the log-

linear models (of Table 6).  Here the table starts with the least restricted model (as in the far 

                                                 
20 As in the simulation study the forecasts employ actual values of the lagged dependent variable. 
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right-hand column of Table 6), and then displays the results for the more restricted versions.  

Again the forecast rmse’s are very similar, 0.006821, 0.006799 and 0.00636 as we go from least 

to most restricted log-linear model.  And among the log-linear models the forecast sample model 

standard errors are similar.  But again comparing forecast RMSE to the ser of the re-estimated 

model, the differences are 19.9%, 15.5% and 16.8%.  While not as large as in the simulated 

Miller-Orr economy of Table 2 (where the difference was over 25%), this is still much greater 

than for the MB&W models. 

 The final column of Table 8 allows comparison of the forecasts of the non-logged 

MB&W models to the forecasts of the log-linear models.  Transforming the forecasts and then 

forecast errors of the MB&W models to log-equivalents, yields an RMSE of 0.005895 and 

0.005877.  Comparing to the RMSE of the log-linear models (from the first column) these are 

about 15% smaller.  Thus the statistical instability of the log-linear models is economically 

relevant, in the sense that their ability to fit better within sample does not carry over to forecast 

performance, especially when compared to the MB&W models designed for a Miller-Orr (S, s) 

economy.   

  

7.  Conclusion 

 The recent applied literature provides empirical support across many countries and time 

periods for non-linear smooth-adjustment models of money.  It has been assumed that this 

empirical evidence is consistent with monetary theory because the Miller-Orr model provides 

economic motivation for standard smooth-adjustment empirics. But this paper shows the 

intuitive arguments used in the smooth-adjustment literature are only partially correct.  Most 

critically, in a Miller-Orr economy a divergence of money holdings from long-run values does 
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not predict the probability or portion of accounts adjusting to target levels.  Standard smooth-

adjustment models can improve on linear models when fitted to the aggregate data of a Miller-

Orr economy, but exhibit instabilities which undercut forecasting ability, particularly across 

regimes with differing long-run demand. 

 The non-linear model theoretically implied by Miller-Orr behavior is found in the 

Milbourne, Buckholtz and Wasan functional form.  Although it can be described as a modified 

smooth-adjustment model, it is of much simpler form than that of standard smooth-adjustment 

models, with only one extra coefficient (beyond that of a linear model) to estimate.  The 

transition variable derived by MB&W is a static level, and it has not been understood that the 

theory underlying the derivations of MB&W is essentially static, in contrast to the dynamic 

language and transition variables used in the smooth-adjustment literature and in the language 

used in MB&W’s own discussion.  This paper has provided some heuristics for the support of 

useful intuition and has used simulations to validate the MB&W derivations. 

 A unique characteristic of the Miller-Orr world is that the non-linearity which emerges in 

the comparative-statics context involves a lagged dependent variable.  This is due to aggregation 

and the fact that in most monetary exchanges the net change in money held is zero.  This aspect 

of the Miller-Orr economy is unlikely to apply to other (S, s) contexts.  But under aggregation it 

was found that the variable subject to (S, s) management will differ from its average or long-run 

value without implying that more agents than usual are close to making an adjustment.  This 

characteristic of the monetary Miller-Orr economy may apply in other non-monetary (S, s) 

contexts such as menu-cost pricing models. 

 Taking the Miller-Orr world seriously implies an extensive agenda for applied modeling.  

One implication is that models are distinguished in their stability and forecasting properties, not 
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by their within-sample fits.  But the alternative to stable coefficients should be instability with 

respect to the transition variable rather than instability with respect to time.  Hence traditional 

break-point stability tests neglect the important dimension.  Empirical models inspired by a 

Miller-Orr economy must control for population growth, using variables which come as closely 

as possible to per-agent measures.  For recent US data total households appears to be an adequate 

scaling factor, but other contexts may require some ingenuity to find a useful scaling device.  

And applied models inspired by the Miller-Orr (s, S) world will employ non-logged variables, 

which interjects interesting issues of integration properties. 

 In a short empirical demonstration in US quarterly data, the MB&W static-transition 

model performs as predicted by theoretical and simulation results.  Unlike log-linear models it is 

unambiguously stable.  And the MB&W model forecasts with smaller RMSE than log-linear 

models.  Lag-selection criteria and tests of restrictions imply retention of many more variables in 

the log-linear models.  So despite its non-linear form the applied MB&W model is relatively 

simple, employing half as many variables.  It remains to be seen whether this holds for other 

time periods and countries previously considered in the literature. 
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Figure 1   
Probability distribution of (discrete) Miller-Orr holdings  and empirical frequency  
of balances (m) with total M > M  consistent with smooth-adjustment 

0 E(m)Z HMean Empirical 
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Figure 2   
Counter-example to smooth-adjustment intuition: 
Empirical frequency of balances (m) with total M > M   
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Figure 3 
Time series of estimated MB&W varying error-correction weight (Equation 13). 
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Table 1 
Attempted modeling of the portion of Miller-Orr accounts adjusting towards targets (pt). 
 
 

 
Model 

 
 
 

Model form 

 
Restrict to 

constant only 
(P-value) 

 
 

Model fit 
(R2) 

Smooth-Exponential pt = b0 +b1(exp(b2[M t-k - M +b3]
2)) 0.0582 0.00748 

Smooth-Logistic pt = b0 +b1[1 +exp(b2(M t-k -M +b3))]
-1 0.388 0.00303 

Linear1 pt =  b0 +b2[M t-k - M ]2 0.706 0.000143 
Linear2 pt =  b0 +b1|Mt-k - M | 0.579 0.000309 
Notes: P-value is for all bi =0 except for b0 (could always reject b0 =0 for test size less than 0.0001).  Coefficients 
(bi) across equations differ in value.  Simulation sample size is 1,000 observations recorded every k’th period, 
allowing for the lag the regression sample size is then 999.  The dependent variable (pt) is the portion of accounts 
breaching management interval thresholds from time t-k to time t in the simulated economy of 20,000 Miller-Orr 
accounts.  These results are for (0, Z, H) = (0, 10, 30) and k = 10, for which the weight on lagged money in the 

partial-adjustment model of Equation 3 is approximately 0.8.  The regressor Mt-k - M is the difference between 
actual and expected total money holdings (20000*4Z/3).  Results were similar (R2 <1.2%) for k = 1, 2, ...5, 10, 15, 
20 and z = 5, 10.   
 
 
 

 



43  

Table 2 
Linear versus non-linear models of a Miller-Orr economy:  
Stability and forecasting in 140,000 observations of simulated data. 

   

Mt = btMt-1 +(1 -bt) M t +εt     
 
 

Model 

  
Forecast 
RMSE 

SER 
Re-estimation over 

forecast sample 

 
 

Difference 

Linear (bt constant):  467.68 365.43 28.0 % 

Smooth-Exponential: 
  bt = c0 +c1exp[-c2(Mt-1 - M t -c3)

2] 

 

472.05 364.00 29.7 % 

Smooth-Logistic: 
bt = c0 -c1/[1 +exp(-c2(Mt-1 - M t -c3))] 

 

452.84 364.57 24.2 % 

 MB&W (Theory-based): 

bt = exp(c0/ M t
2
) 

 

359.45 359.16 0.08 % 
     

Notes:  Data is from simulations of fourteen regimes of 10,000 observations each.  Across regimes parameters 
(Z, H) are controlled to imply a weight on lagged money (bt) which varies as 0.30, 0.35, ...0.95.  To generate 
forecasts models are first estimated over the seven regimes with smaller bt, a total of 70,000 observations.  
Estimated coefficients are then used to forecast in the other half of the data.  The first column reports root-
mean-squared errors of this forecasting exercise.  The second column shows the estimated model variance 
when the models are re-estimated in this other half of the data.  For these large samples instability of very 
small magnitudes will be statistically significant, hence this table reports the magnitude of model instability via 
the difference between forecast RMSE and the estimated fitted-model standard-errors. 
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Table 3 
Integration of scaled (per household) aggregates and  
Treasury yield (10-year) 1959-2007:   
ADF tests across assumptions and lag criteria. 

 
Levels variables 

 Min p-value  
across tests 

m  (Log real M1/H)  0.78 
y  (Log real GDP/H)  0.25 

r (Log 10-year Treasury)  0.53 
   
  Max p-value 

Differenced variables  across tests 
∆m  0.005 
∆y  less than 0.001 

∆M (MB&W dependent)  less than 0.001 
∆r  less than 0.001 

Notes:  Before differencing and lag-truncation data is quarterly 1959.1-2007.4. 
Test regressions are constructed with both min AIC and min SIC lag criteria, 
and with and without a constant or constant and trend.  Lags retained varied 
between seven and zero.  Results are as calculated by Eviews, which employs 
probability values from MacKinnon (1996). 
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Table 4 
Johansen Cointegration Tests 
Logged real M1 per household, RGDP per household, ten-year treasury yield, constant 

VAR  
lag criteria 

 
Lags retained 

Trace statistic 
(No cointegrating vectors) 

Probability 
value 

AIC 2 42.08 0.008 
SIC 1 50.58 less than 0.001 

Notes:  Probability values are less than 10% for three through six lags.  The aic and sic lag selection criteria 
were applied to a differenced VAR, which is the correct model under the null of no cointegration.  Results are 
calculated using Eviews, which takes p-values from MacKinnon, Haug and Michelis (1999).  The single-lag 
test equation also rejected one or fewer cointegrating relationships (p-value less than 5%), but this did not hold 
for tests with additional lags. 
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Table 5 
Estimation of MB&W models 1960.1-2007.4 

 

∆M t = ( ( )2*
t0 )M̂/(cEXP  -1)(Mt-1 -

*
1-tM̂  - *

tM̂∆  +∑
=

∆
0 i

*
i-ti M̂b ) +∑

=
∆

1 i
i-t i Md  +εt 

     

  Unrestricted  Impose b0 = 0 
Lags retained (min aic)  2  2 
Estimated coefficients  6  5 

     

ecm(t)b̂-  = -( ( )2*
t0 )M̂/(ĉEXP  -1)     

ecm(t)b̂-         (mean, min, max) 
 (0.036, 0.018, 0.068)  (0.042, 0.021, 0.079) 

     

ecm(t)b̂ *b0      (mean, min, max)  (0.030, 0.015, 0.057)  “ 
     

ecm(t)b̂ *∑
=1 i

ib (mean, min, max)  (0.131, 0.065, 0.247)  (0.110, 0.055, 0.208) 

∑
=1 i

id   0.649  0.648 

     

AR(1)   (p-value)  0.34  0.92 
AR(4)   (p-value)  0.38  0.50 

ARCH(1)   (p-value)  0.63  0.81 
ARCH(4)   (p-value)  0.75  0.78 

     

Restriction (P-value)  -  0.167 
     

R2  0.648  0.645 
SER  78.04  78.22 

log equivalent ser  0.00673  0.00674 
Notes:  The log-linear equivalent ser is calculated by transforming non-logged fitted values as 

1-t1-ttt m- )M M̂ln(  m̂ +∆=∆ .  Then tm̂∆ -∆mt is treated as a residual, with the sum of squares divided by the 

degrees of freedom to calculate the (estimate of the) log-equivalent model variance.  Restriction p-values are from 
log-likelihood tests.  ARCH p-values are from Engle (1982) chi-squared LM-tests.  AR p-values are from Breusch-
Godfrey (chi-squared) LM-tests. 
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Table 6 
Estimation of log-linear models 1960.1-2007.4 

       

∆mt = -becm(mt-1 -
*

1-tm̂  - *
tm̂∆ ) +∑

=
∆

0 i

*
i-ti m̂b  ∑

=
∆

0 i
i-ti rα +∑

=
∆

1 i
i-t i md  +εt 

       

    Restrictions   
  αi = 0  αi = 0, b0 = 0  None 

Lags retained (min aic)   2  2  3 
Estimated coefficients  6  5  12 

       

becm  0.037  0.044  0.035 
       

b0  0.034  -  0.444 

∑
=1 i

ib   0.148  0.144  -0.400 

∑
=0 i

iα   
- 

 
- 

 
-0.065 

∑
=1 i

id   0.628  0.628  0.648 
       

AR(1)   (p-value)    0.080  0.455  0.798 
AR(4)   (p-value)    0.058  0.132  0.384 

ARCH(1)   (p-value)    0.430  0.800  0.452 
ARCH(4)   (p-value)    0.021  0.090  0.103 

       

Restrictions   (p-value)  0.021  0.017  - 
       

R2  0.644  0.640  0.671 
ser  0.00684  0.00686  0.00669 

Notes: Tests are as in Table 5, except that since the retained lags differ across models the tests are of the stated 
restrictions plus the lag restriction imposed by the aic.  For instance, for the model of the first column the test is for 
α0 =α1 =α2 =α3 =d3 =0 versus the three-lag model of the right-hand column.  Retaining the three lags of the 
unrestricted model and separately testing the three nulls b0 =0,  α0,1,2,3 = 0,  b0 = α0,1,2,3 = 0, yielded p-values of 
respectively 0.008, 0.028, and 0.020. 
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Table 7 
Stability test probability values.  

Sample split with respect to level of long-run *tM̂ . 

Model  F (anova) Likelihood-ratio 
MBW (αi = 0)  0.414 0.353 
MBW (αi = 0, b0 = 0)  0.254 0.209 
    

Log-linear  0.085 0.050 
Log-linear (αi = 0)  0.020 0.022 
Log-linear (αi = 0, b0 = 0)  0.011 0.010 
Notes:  Models are the same as in Tables 5 and 6, but here the unrestricted MB&W model of 
Table 5 is denoted as imposing αi = 0 (as it omits separate changes of the interest rate).  Sample is 
split depending on whether the estimated long-run equilibrium from the Engle-Granger static 
levels model (Equation 12) is below or above its median, almost all the lower values are within 
1969.1-1992.2. Likelihood-ratio tests are based upon replacing any coefficient (b) by the term 
b*bD, where the exponent “D” is a (0, 1) dummy splitting the sample, and the stability null is b=0. 
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Table 8 

Forecast RMSE:  Estimation sample *tM̂ ≤ its median, forecasts in the remaining data. 

 
 
 
 
Model 

  
Forecast 

rmse 
(rmse logged 
equivalent) 

 
 

SER  
Re-estimation over 

forecast sample 

 
 

 
 

Difference 
MBW (αi = 0)  82.11 

(0.005895) 
80.34 2.2 % 

MBW (αi = 0, b0 = 0)  82.41 
(0.005877) 

79.97 3.1 % 

     

Log-linear  0.006821 0.005688 19.9 % 
Log-linear (αi = 0)  0.006799 0.005885 15.5 % 
Log-linear (αi = 0, b0 = 0)  0.006836 0.005853 16.8 % 
Notes: Models are the same as in Tables 5 and 6.  Sub-samples are the same as in the stability tests of Table 7.  
If the SIC is used for lag selection, then results are similar but forecast rmse’s are equal or larger.  In the first 
column forecasts of the non-logged MB&W model are transformed to a logged equivalent as described in the 
notes to Table 5.  These can be compared to the log-linear model forecast rmse. 
 


