Smooth-Adjustment Econometrics and Inventory-Thgoidoney Management

Clinton A. Greene
Department of Economics
University of Missouri-St. Louis
St. Louis, MO 63121-4499

(314) 516-5565
fax (314) 516-5352
clinton_greene@umsl.edu

November, 2009

Abstract

A growing number of empirical papers use Miller-Q8; s) money management
as economic motivation for application of non-linemooth-adjustment models.
This paper shows such models are not implied byitier-Orr economy.

Instead, the Miller-Orr economy implies non-stamdsmooth-adjustment, as
derived in the neglected (and misinterpreted) waidriilbourne, Buckholtz and
Wasan (1983). Remarkably, this function includesiging weight on the lagged
dependent variable, capturing static (not dynamiigcts. Interpretations of these
apparent dynamics are presented, some of whicho@ageful in non-monetary
(S, s) contexts. Results imply a new agenda fplieg smooth-adjustment
modeling of money.
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0. Introduction

Non-linear smooth-adjustment models as developelebasvirta (1994) have been
applied to monetary data in a growing number of ieicg) studies. Where authors have offered
motivation from monetary theory for these non-lineeethods they have always made reference
to target-threshold (or trigger-target, or S,s) mpomanagement rules based upon inventory
theory, with most referring to the Miller-Orr vania This is natural, as Miller-Orr style money
management induces complex behavior, and smootistaggnt models employ very flexible
non-linear functional forms.

The Miller-Orr monetary model is cited as undertymotivation for smooth-adjustment
econometrics applied to Italian data in Sarno (}98® Taiwan in Huang, Lin and Cheng
(2001), to Spanish data in Ordonez (2003), andJ®data in Sarno, Taylor and Peel (2003).
The most detailed argument for this economic raf@is provided in Sarno’s 1999 paper and
again in Sarno, Taylor and Peel (2003). Other mapging Miller-Orr as economic motivation
for smooth-adjustment either refer to or reprodeleenents of their argument. These more
recent papers include Chen and Wu (2005) who irgastboth US and UK data, Lee, Chen and
Chang (2007) for G-7 data, US data again in HauTaam (2007), and then data for Taiwan in
Wu and Hu (2007) and again in Lee and Chang (2b08).

The argument made for a tie between smooth-adargtand the Miller-Orr economy is
based upon the fact that under the Miller-Orr aled under inventory-theoretic models in
general) the individual agent allows the balancedader as driven by random net receipts, and

adjustment to a target level is triggered onlyd balance breaches upper or lower bounds of

! Via the SCOPUS data-base it was found that th&swvorthis list of papers (claiming a Miller-Orrti@nale) were
in turn cited in eighteen other published papers of these in 2007 through 2008. Among the eigh} ten cite
Sarno (1999) or Sarno, Taylor and Peel (2003).



some interval. Itis taken as intuitively obvidhat the larger the deviation of holdings from the
long-run (or average, or equilibrium) value thea thore likely it is that many accounts are close
to breaching their trigger-points, soon to adjostdrds the targets. Thus the deviation of
holdings from their long-run levels should affdu tspeed of adjustment towards this long-run,
with the speed of adjustment increasing with tle sif the aggregate deviation. It is then noted
that smooth-adjustment functions allow for justtsaqositive relationship between (on the one
hand) deviations from equilibrium and (on the oth@nd) the speed of adjustment. On that
basis these papers claim it is intuitively obvithet Miller-Orr money management must imply
smooth-adjustmerit.

This paper shows that some of this intuition isect, but a Miller-Orr economy induces
important complications not captured in the staddanooth-adjustment functional forms.
Consistent with the applied literature, the Mill@rr economy is non-linear, and in a Miller-Orr
economy standard smooth-adjustment functions canowe on the fit of linear models. But not
for the reasons described in this literature. Plaiger also shows the standard smooth-
adjustment representations of the Miller-Orr ecop@me unstable (in a Miller-Orr economy)
and so forecast poorly. This instability is ndtiaction of time, so may not be detected when
applying standard stability tests. Anticipating timension along-which this instability lies and
specifying a stable non-linear function requiressiderations additional to those discussed in
this monetary smooth-adjustment literature.

In clarifying the issue it will be useful to comipahe smooth-adjustment intuitions to
some prior results neglected in the literaturelb®lirne, Buckholtz and Wasan (1983, hereafter

MB&W) presented rigorous results on the form of r@ggte non-linearity implied by Miller-Orr

2 Motivation from buffer-stock models is also mengal. A buffer-stock is an inventory, and inventory
optimization leads to (S,s) rules, so it is notclihat buffer-stock theory is distinct from Millenr type thinking.



money management. But their results are not iraratpd into any of these published papers
applying smooth-adjustment econometricAnd their results have generally been neglected.
The correct non-linear model derived by MB&W isanrstandard smooth-adjustment model
with a static transition variable. The use ofaistrather than a dynamic transition variable sets
the correct model apart from the standard smoojinsadent approach.

The fact that rigorous results for the non-lineature of the Miller-Orr economy
(derived by MB&W) have been largely ignored forwager-century is a puzzle in itself worth
addressing. In my view there are two legitimatesoms for the neglect. First, the discussion in
MB&W is very brief and does not provide a helpfelsdription of the nature of their
mathematical results. Second, their most preeiselts are buried among other loose
approximations adopted for empirical applicatioecessitated by the limited computing power
available at the time. Given these handicaps,nbt surprising that non-linear modeling of (S,
s) economies has been little affected by their work

In response to these difficulties, | present dpions and intuitive heuristics useful for
understanding the work of MB&W. Since (S, s) madeve application not only in inventory
management but also in some (New-Keynesian) pdggsament modeling, some of the
interpretation presented in this paper will be maneadly useful. So along the way | comment
on which results here are likely to hold in othentexts and which characteristics are unique to
money.

The paper proceeds in six steps. Section 1 dissusow a Miller-Orr economy implies
(in the aggregate context) a model with the stmectd partial-adjustment (or restricted error-
correction), but with weights or coefficients whieairy. In this initial discussion it will become

apparent that the probability of portfolio adjustindoes matter for coefficient values. Hence an

% Although cited by Sarno (1999), the actual resoiltsiB&W are not discussed nor used.



aspect of the motivation for application of smoathustment models to money data adopted in
the applied literature is indeed correct.

In Section 2 simulation methods are used to ingats how well standard smooth-
adjustment and related forms can model this vargnodability as posited in the monetary
smooth-adjustment literature, namely that this pholity is a function of the difference between
actual and expected money holdings. It turnsoatt $uch functional forms do no better than
assuming a constant probability. This means freahooth-adjustment models perform well
empirically, then this is not due to this aspedthef story told in the literature.

The difficulty with the story is due to the fablt under aggregation money holdings can
be larger than average without individual holdihgsg closer than usual to the upper boundary
of the (S, s) interval. To support intuition fbletsimulation results | provide a counter-example
which can easily be extended to a continuum ofatians. This result is the most likely to carry
over into other non-monetary contexts.

In Section 3 | turn to the derivations of MB&W,mshing that although their results can
be seen as implying a highly modified smooth-adpestt model, the form is not the one used in
the smooth-adjustment literature (to date) andhberetical interpretation is quite different. In
particular the standard smooth-adjustment modellisg a dynamic story. But although the
non-linear MB&W model incorporates a lagged dependariable, it is nonetheless a model of
comparative statics.

That trigger-target (S, s) behaviors at the irdiral level can imply for an aggregated
model that lagged money is important, but thisiagot capturing dynamic effects, is perhaps
the key insight into the nature of a monetary {®c®nomy. Likewise non-linearity is generated

in a comparative-statics context. Once one unaedstthe static basis for non-linearity (and the



predictive role of lagged money despite the statittext), it becomes possible to understand
how standard smooth-adjustment forms can approrimddiller-Orr economy, but for reasons
not yet discussed in the literature. Standard $imadjustment forms may be approximating
comparative static effects of the Miller-Orr econorather than capturing dynamics.

This leads in Section 4 to consideration of aedéht sort of simulated Miller-Orr
economy, one in which comparative statics are ak(dnd of large magnitude). There |
compare standard “dynamic” smooth-adjustment moatalisa model based upon MB&W. It
will turn out that all the models are close comjoesi when fitting within sample. In the non-
linear Miller-Orr economy there is little differe@mén fit between standard smooth-adjustment
models, the MB&W model, and even linear modelst #nooth-adjustment models equivalent
to those estimated in the monetary literature @i@)are highly unstable in this Miller-Orr
economy, forecasting out-of-sample with much la{geean-squared) errors than those for the
MB&W model. For reasons that will become obvidus televant test of stability is not with
respect to time, but rather stability with respgedhe level of the variable driving the non-
linearity, introduced in the next section.

Sections 5 and 6 discuss issues in empirical egtpdn of the correct non-linear
(MB&W) model and present a short empirical applmatin US quarterly data, comparing it to a
log-linear model. Although the MB&W form is muchrgler than standard smooth-adjustment
models, it cannot be applied directly to the aggteglata usually employed in applied studies.
Suggestions are made for approaching these isdueb may be helpful in applying the model
to data considered elsewhere in the smooth-adjustiterature, such as non-US data or annual

series for the nineteenth century. Although kegpivis paper to reasonable length requires an



abbreviated empirical treatment, | make some eftodutline questions that deserve more

extensive empirical investigation elsewhere.

1. Predictorsof Money Holdingsin the Miller-Orr Economy

The Miller-Orr monetary model is one example @ thass of inventory-theoretic models
which take account of the fact that lumpy costexarting control imply it is optimal to allow
the controlled variable to wander as driven byydailents (such as receipts and disbursements,
or sales and deliveries), exerting control only wkiee variable breaches some interval. Such
optimal control models (sometimes called (S, gyigger-target models) are routine in
engineering and business, and most of the reléxargture long ago migrated to the business
and optimal-control journafs.A general model developed in the contemporaryegucs
literature is found in Bar-llan, Perry and Stadjé4).

A Miller-Orr agent finds it optimal to adopt a tveaded (S, s) rule, allowing the money
balance to wander randomly within bounds. Thisqyadf letting the balance wander within
some interval is optimal given fixed (lumpy) cosfdransfers between money and the
alternative interest-bearing as3eln the most common formulation the costs of aatieg
balance are implicitly taken to be greater thanlaingpy transfer cost, implying a lower bound of

zero and a management interval of [0,H]. The stechdhodel familiar to economists assumes

* Applications can be very complex. For instan@ks now avoid reserve requirements on about héiéely-
checkable deposits by using software that peridigit@ansfers funds between the depositor's accamdta
“shadow” or “accounting” money market deposit agdodMMDA). In any month only six withdrawals are
permitted, hence a seventh has a large and lungiyinducing a non-linear optimal control problernthaime-
varying targets and triggers (S,s).

® There are counter-examples to optimality in thenemics literature which rely on imposition of aitutal
conditions. For instance, the counter-exampleanlBan (1990) relies on imposing a zero balanca fimal period,
implying the holding cost of money in the final jwetis not only different than in previous peridug must be
unbounded (undefined) for a non-zero balance. Mereral optimality results which make referenctho
traditional transactions models familiar to econstsican be found in Constantinides and Richardg) 97ickson
(1985) and Bertola and Caballero (1990).



daily net receipts are discrete and independemiiod positive or negative one, but the same
optimality results hold if the balance follows arspetric discrete or continuous (diffusion)
process, and/or under continuous monitoring. bhsases there is a single optimal target Z =
H/3. In these standard formulations the distrdnuf the balance is triangular, with a mearn-
4H/9 which one should note is greater than thestatg=H/3). The value of the upper trigger
(H) will depend on the expected yield on the akine asset and the variance of daily net
receipts. Such considerations affect scalingibtithe shape of the distribution nor the
relationships between optimal Z, H and expectedihgk.

Because individual holdings are random, the emgidistribution of balances for an
economy of n accounts will differ at any pointimé from the probability distribution. Taking
M; as the actual total at time t and denoting theeggie expectation 84 =nm, then the
difference M-M is itself random. Figure 1 shows the triangulatrtbution and illustrates a
possible empirical frequency, this distinctionngortant both for the role of lagged holdings

and the smooth-adjustment intuition.

1.1 Mean Holdings or “Long-Run Demand”
The usual approach to application of Miller-Ompéymodels uses only expected holdings

or for an economy of n accounts

Ny =M. (1)
The inventory-theoretic literature often referstie expectatiorM as “long-run demand”,
“desired holdings” or simply “demand”. The usetloé term “desired” is unfortunate, since all

levels of holdings within the management interval @ptimal, and strictly speaking demand is a

correspondence not a function. The use of the terget” for the value Z is likewise



unfortunate, since this value is optimal only igfuently (at the moment of a decision to change
holdings), and for inventory based models in gdrtemexpected value of holdings does not

correspond to this “target” levél.

1.2 Lagged Money as a Static Predictor
The most interesting properties of the Miller-@conomy derive from the fact that as
long as an individual balance has not breacheddrgagement interval then it wanders

randomly as driven by net receipts over time. Timiglies there is an important alternative to
using the simple med@lt as a predictor. In particular, from one obseoratf money to the

next a portion of account balances have not beienféned with, having followed a random walk
without encountering the bounds [0, H]. This ireglive could also use an alternative predictor

based upon the random walk property or
|\7|'t = Mt-l- (2)

This might seem to be poor competitor with the md&nespecially since we may be observing
money infrequently and balances may have wandarefddm their previous (time t-1) values.
However for a closed model these transactionspecaiust net to zero, and within the subset of
accounts not breaching their management intervatsymwill have transacted mostly with like
accounts, and thus the net change in holdinghése accounts is close to zero. The sum of

holdings from time t-1 to t is modified only to te&tent portfolio readjustments have been

® To have z =M, in the Miller-Orr case requires z =H/2. Thismoapplies to more general models which have
two targets (depending on whether the upper oridwend is breached), each of which differs froname
holdings.



triggered’ If there are proportionally few portfolio reargements, them?l't can have a much

lower error variance than the alternativ .

This strong and static role for lagged money ne#darry over to other (S, s) contexts.
In a closed monetary model each transactions dradites a balancing debit. But physical
inventory models do not generally include an analsgcondition, because natural resource
extraction is not usually counted as a decreaseventory, and household inventory
accumulations are also usually negleétefind in menu-cost driven pricing models an inceeas
in one firm’s price is not taken to imply a dece@s the prices or costs of another. Hence a role

for the lagged dependent variable is special toetay models.

1.3 The Nesting Model and Non-Linear Weighting

We have two predictors based upon very differens@erations, one relying upon the
unconditional mean and one which is informatived@ubset of accounts. We can improve our
forecasts by using a pooled or joint model. HanaeMiller-Orr economy a model with lower
error-variance than (1) and (2) is

M; = bM1 +(1 -b)M +e,. (3)

In applications one would date the unconditionahm®!,, in which case the error-correction

form would be (using the traditional equilibriumroection term My -M, ;)

AM = (b-1)(M1 -M 1 -AM, ) +&; . 4)

" This also implies the assumption of a random walket receipts is not necessary. But strayingftbis
assumption leads to more complex optimization gnoisl than in the Miller-Orr case, and also leadtiff@ulties

in satisfying the aggregation condition that a semtions receipt for one agent must be a debérother.

8 It might be possible to include this element jphgsical inventory model which allows for multipieyers of
intermediate processing and production, where arease in one firm’s inventory would be providedsbgecrease
in the inventory held by the supplying firm.
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But the unique aspects of the Miller-Orr econong/ most starkly illustrated if we assume
management intervals thid are constant (implicitly holding the interest ratmstant).
Because the timing of management interval breashe@smdom, the random component is
inherent in the Miller-Orr world, and Equation 3péips even with a constant unconditional
mean(M ). And the derivations of Milbourne, Buckholtz awtsan discussed in Section 3

make this assumption of a constant mean. In #8e @ve can remove the time subscript from
M (M, =M,,) and simply write Equation 3 as

AM = (b-1)(Mea -M) +e . (5)

Nonlinear models arise as forms which allow thesghit to vary. The smooth-
adjustment intuition relies upon a connection betwihe probability of asset transfers (breaches
of [0,H]) and the value of the weighting b. limsportant to note that in partial-adjustment it is
legitimate to speak oM as a desired level towards which holdings adj@stt in a Miller-Orr
economy random holdings are inherent in indivicheflavior, there is no single-valued optimum
and so it is misleading to think of the weight @é8)measuring a speed of adjustment.

Put differently, partial-adjustment is a dynantarg. But in our Miller-Orr economy it
will be more useful to think of Equations 3, 4 @&nds employing alternative static predictors,
despite the presence of a lag of money. Ratherittiarpreting a large weight on lagged money
as indicating slow adjustment, a more accuratei$tguis to think of it as implying lagged
holdings are informative for a large portion of atgbecause portfolio readjustments are

infrequent.
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2. The Smooth-Adjustment Inter pretation of the Miller-Orr Economy

In Figure 1 the actual distribution of accountskewed more towards the upper bound
(H), than is implied by the triangular probabildistribution. This has two implications. First,
actual holdings are greater than the mean predintete probability distribution i.e. MM >0.
Second, since balances are more concentratedheeapper threshold H, from t to t+1 there is a
greater than usual probability of asset transf@st¢ring more balances to Z), and hence a
greater probability than usual of a reduction iattoldings.

The smooth-adjustment story takes a positive iffee between actual and mean
holdings as a signal that breaching the upper bofitlte management interval is more likely
than usual. Thus the smooth-adjustment intuittad$ us to allow the weighting in the above
equations (b) to vary over time as a function fM :

AM; = (B-1) (M1 - M) +¢'y (6)

b =f(M¢a 'M)
In the monetary smooth-adjustment literature tmetionf() has been taken to be of two
possible forms, exponential or logistic, with (restively) i = exp[-¢(Mx -M -c3)?] orb =1 -
1/[1 +exp(-¢(Mx -M -c3))], where >0 and we avoid notational clutter by letting the
coefficients ghave different values across equations. Mostiegipmins also allow for a linear
(fixed) component and may add an additional scdketpr or b= by +b*f(My1 -M ). Some
studies have investigated other transition vargble have usually rejected them in favor of
(M1 -M). In any case this is the transition variablesistent with the intuition claimed to

motivate a Miller-Orr basis for smooth-adjustmermdals.
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2.1 Does the Smooth-Adjustment Story Work?

The question is whether knowing the differenceveen actual and mean holdings tells
us something about the probability of asset trassfelere | take a direct approach, simulating a
Miller-Orr economy, recording the portion of acctaiengaging in transfersy(ffrom time t-k to
t and also recording (M -M ), whereM = the expectation implied by the triangular
distribution. | then try to model ps various functions of (M-M ). If k >1 then values are
recorded every k'th period. For given (Z, H) theplied weight on lagged money in Equation 3
decreases as the time between observations (Idpises.

In the simulations there are 20,000 accounts warelrandomly paired each period and
receive a debit or the balancing credit. An imanttaspect of such a model is that the timing of
management interval breaches (or asset reallogtaiti be random and thus in the aggregate
unbalanced. Without Central Bank commitment tovghe liquidity as needed, it is not possible
to hold interest rates and thus management intepaaistant. So to the extent portfolio
readjustments are triggered, the simulations intplitteat any imbalances as met by Central
Bank commitment to stabilizing interest rates. slimplies aggregate holdings vary randomly
over time.

The simulations are long enough to generate omagstind observations (regardless of
observation frequency k) of Mnd M. for a given z and thus for a constant. This was done
for all combinations of k = 1, 2, 3, 4, 5, 10, 26,and z = 5, 10. Results were similar in all cases
in the case presented (k = 10, Z = 10) the avezatimated value for the weight on lagged

money in a regression of Equation 1 is about'®.8.

° This is discussed in Section 3.
9 programs and resulting data files are availaptuequest.
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Table 1 shows the results of attempts to modesing various forms related to the
smooth-adjustment story. The second column fronmithe shows the results of a test for
restricting the model to a constant, showing thabpbility value of a simple ANOVA F-statistic.
Since these are large samples, a very small chartge model variance (restricted versus
unrestricted) could still at conventional significa levels lead to rejection. So in the last
column on the right | display the coefficient ofriaion for the models. Since this{Rs zero
when the constancy restriction is imposed, itfisemsure of the gain of the non-linear model
over the linear model.

The first row of Table 1 shows the results of mipéing to model the portion of accounts
breaching the management bounds using a smoottrerpial modef! The probability value
for imposition of a constant relationship is 0.0582plying rejection for a test size of ten-
percent, but not for a size of five percent. Gitlemlarge sample it makes sense to choose a test
size smaller than conventional values, i.e. awekunder five-percent. More to the point, in
the last column we find the’Rf this smooth adjustment form is 0.00748, weliemone
percent. Very little of the variation in the ratieportfolio adjustment (pis explained by this
smooth-exponential function.

The second row of Table 1 shows results for a $mlmgistic function. Here we can
accept the restriction to a constant, the prolghiilue for the implied restriction being 0.388.
The third and fourth rows investigate alternatiteeghe standard smooth-adjustment forms,
attempting to model;@s a function of the absolute value of the tramsivariable (M1 -M).
Again the cost in reduced fit when reverting toititercept-only model is small, and the implied

restrictions are not rejected.

| do not impose sign restrictions.
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This aspect of the smooth-adjustment intuitionfaded, knowing M1 #M does not
help us predict the probability of adjustmentsaigét levels. What then is wrong with the
smooth-adjustment intuition? The answer is simge is illustrated in Figure 2. As in Figure
1, here actual holdings are greater tihdn But the probability of near-term breaches of the
interval is not greater than usual, because theabdensity of balances near the bounds 0 and H
is not greater than usual. In fact the portiobafnces near the upper bound is lower than
usual, implying a lower probability of reductiomsbalances despite average holdings greater
than the long-run mean (MM ). For an individual balance it is correct that-rm >0 implies
my is closer to H than usual. But this does not Hiofdan aggregate distribution. It is easy to
imagine a continuum of similar counter-exampleswiarying empirical distributions. The
simulations tell us that the sort of distributidinstrated in Figure 1 is no more likely than that
illustrated in Figure 2.

In these simulations we were holding the managémesrval width (0, Z, H) constant,
SO any variation in the rate of portfolio adjustinaas due to short-term dynamic fluctuations in
the empirical density away from the theoreticatrthsition, as posited in the smooth-adjustment
literature. It turns out that although this asp#dhe smooth-adjustment intuition is not correct,
there are other reasons for a gain in moving froear to smooth-adjustment models. But to

discuss these reasons it will first be helpfultamaine the results of MB&W.

3 Milbourne, Buckholtz and Wasan: Nonlinear Aspectsof the Miller-Orr Economy

MB&W formally derive the optimal relative weightinb or hin Equations 3-6) as a
function of the width of management intervals, Yheiance of daily net receipts, and the time

elapsing (k) between observations of money. Fopatoses the most useful result is their
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Equation 20. We will be holding constant the viace of daily net receipts and the elapsed time

between observations of money (respectivélgnd t in MB&W). Folding constants into one

term and also taking advantage of the fact Matnm = n4h/9 (they denote the upper threshold

with the lower case “h”), then we can rewrite thressult for the weighting as

b=exp(@M? a<O0. (7)

3.1 Interpreting the Milbourne, Buckholtz and Waséodel

It is important to note that in Equation 7 | haag given mean or long-run holding$1()
a time subscript, as the problem solved by MB&Wetathe management interval (0, Z, H) and
thus long-run holdings as a given. Thus theirltesistatic from two perspectives. Their task is
a comparative statics exercise in the sense thateg 7 shows how the optimal weighting will
differ in Equations 3-6 across separate regimeghich long-run demand is constant but takes
on different values across the regimes. Theirlreles not tell us about the transitions between
regimes, for instance it does not tell us abouefifects occurring during a reduction in the upper
threshold H (say in reaction to higher interestsats the process of compressing the
distribution of Figure 1 piles probability masgia¢ target (Z). Such dynamics are complex and
transitory, and are not addressed by Equation HydoiB&W.?

Their result is static in a second respect. Wfid&opn 7 was a smooth-adjustment function
then the right-hand side transition variable wcwgdthe dynamic difference yl-M .** Due to

the random nature of Miller-Orr holdings this varfeom moment to moment even when

2 Greene (2001) explores the very complex natutditiér-Orr dynamic transitions and develops moditions of
the non-linear comparative-static MB&W model tooallfor these dynamics.
13 Another possibility in smooth-adjustment modelisgo use a transition variable formed as chanfissme of

the variables determining demand, if advl then changes in interest rates or changes in iacdmthis case the
characterization of smooth-adjustment as dynamicthe MB&W model as static still applies.
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management intervals arM are constant. So smooth-adjustment implies anvgugoefficient
(b) when management intervals and long-run demesmdanstant. But Equation 7 employs the
level of long-run demand and if long-run demandadsstant then the equation and the MB&W
results imply a constant weighting.

Unfortunately the discussion in MB&W can be unlfigllp Their use of terms is entirely
proper if one defines short-run adjustment as beimglved anytime a model includes a lagged
dependent variable. But as we have seen aboventhéhematics assumes away most of what
would usually be considered dynamic, and so “comatpag-statics” is a more useful label. If
one reads carefully one can tease out some o$titis-dynamic distinction, for instance they
state that “this view of money holdings is differ&mom the usual stock adjustment view” and
they refer to the distribution of holdings “whoseeeage is the ‘desired’ level of money
holdings.” Yet at times they refer to their resuds regarding the “short-run” and “adjustment”.

Also, their theoretical section essentially ends \Equation 21. The later equations are
motivated by an effort to take shortcuts for engairiapplication. For instance they abandon the
exponential form implied by their results, movimgat simpler Taylor series approximation.
Such simplifications are understandable given tmeputing power available at the time, but are
unnecessary today. They also assume some praxidsefvariance of daily receipts and for
portfolio adjustment costs which deserve more chestamination. So those contemplating
empirical applications will stand on the strongésiretical ground if they take inspiration from

MB&W'’s Equations 20 or 21.
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4. Smooth-Adjustment and Compar ative Statics

The work of MB&W implies non-linearity emergestime comparative statics context,
with differing regimes of management interval wid#lthough the results above show that
smooth-adjustment cannot be justified on the baaismed in the literature, this does not rule out
the possibility that smooth-adjustment can wellragpnate a Miller-Orr economy with
differing regimes, a factor not included in the siations above. There is the additional
consideration that smooth-adjustment functionsvarg flexible forms, and the form derived by
MB&W relies upon truncation of some expressions i@naore restrictive than standard smooth-
adjustment. Thus it is of interest to compare sim@aljustment functions to the MB&W form in
a comparative statics context.

This section examines the performance of lineagath-adjustment, and the MB&W
forms in a Miller-Orr economy in which managementervals and mean holdings differ over the
sample, making comparative static effects operatAgain the simulated economy will consist
of 20,000 accounts. But here there are 14 regohd#fering management intervals with
parameters chosen so the implied weight on laggatesn(b or bof Equations 3-7) varies as
(approximately) 0.30, 0.35, 0.40, ...0.95. In ordeachieve this design | make two related
changes to the previous simulations. Net recaigggirawn from a normal (0,1) distribution, and

parameters Z and H are allowed to equal non-integiees* For each of the fourteen regimes |

record ten-thousand observations of aggregate M, &hd M ., for a total of 140,000

observations.

14 This is equivalent to assuming balances follatiffusion process. As shown in MB&W, this maintsithe
mean (and optimality results) of the original deterframework of Miller and Orr.
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4.1 Within-Sample Fit, Stability and Out-Of-Samipbeecasting

All of the competing models are variations of

M = BM¢1 +(1 -R) M ¢ +; k =f() (8)
where M is not estimated but is the population value 20880). In the linear model s a
constant to be estimated directly. As in stangaadtice the smooth-adjustment models are

specified to nest the linear case. For the smeggonential moddl() is replaced by

Co +C1eXP[-(Mek - M, -c3)?], while for the logistic versionf{) is replaced by

Co -/[1 +exp(-a(Mx - M, -C3))]. For the MB&W modef() is replaced by expgtM?).*> The
coefficients (¢ are estimated via simple non-linear least-squaltas helpful to recall that M
varies randomly from observation to observatior, My is constant (via constant management

interval width) over sub-samples of 10,000 obséowst

4.2 Within-Sample Fit

The second column of results in Table 2 showsebeession standard errors when fitting
the models in the half of the simulated data inclwhhanagement intervals (and mean holdings)
are larger (b = 0.65, ...0.95). Notice the linemdel SER of 365.43 a bit larger but very close to
the smooth-adjustment model SER’s of 364.00 and536dnd also close to the SER of the
MB&W model (359.16). In fitting within sample th@ear model is able to approximate
comparatively well even though we know coefficievasy. Likewise there is little to

distinguish among the non-linear model standardrgrr

15 Where for notational simplicity coefficientsrepresent different values across equations.
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4.3 Forecasting and Stability in the Miller-Orr &womy

In these large samples (70,000 observations) oulel ceject constant model coefficients
even if coefficient variation is too small to beiwiportance. As discussed in DeGroot (1986,
pp496-7) one way to deal with this it to decide remall a difference matters, and adjust the test
size to avoid rejection of differences judged tesb®ll. But unless one knows the results ahead
of time, this requires ex-post examination of eated variances in order to pick the useful test
size.

| take a more direct approach. Since all the risofitenearly as well within a sample of
varying regimes, instability will be important onfyone is forecasting for a regime not included
in the estimation sample. And we can obtain a oreasf the importance of such instability by
fitting and forecasting in distinct sets of regim@$us forecasting “out of sample” will give us a
measure of the importance of any instability.

The first column of results in Table 2 shows thgults of this sort of forecasting
exercise. In particular, we are forecasting fer shme set of data used to estimate regression
standard errors in the second column. But thecémts here use coefficients as estimated in the
other half of the data, data in which Z and H hiaken values outside the range of those within
the data being forecast. In particular | estintatefficients over the 70,000 observations in
which (Z, H) vary to imply an optimal linear weigbih lagged money that varies as 0.30, 0.35,
...0.60, and then forecast over the next 70,00@rghtions in which (Z, H) imply a linear weight
varying as 0.65, 0.70, ...0.95. Thus the sampivisied not by time, but by mean holdinlys.

For the linear model the forecast RMSE is 467268t smaller than that for the smooth-

exponential model of 472.05, but larger than theSE\f 452.84 of the smooth-logistic model.
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But the forecast RMSE for the MB&W model is subsitly smaller at 359.45. This is a full
twenty-five percent less than that of the smootiistic model, which is the nearest competitor.

Perspective on the difference between estimatiohf@recasting results is given in the
second and last column of Table 2. The secondrmokhows the SER of each model when re-
estimated within the forecast subsample. Theclalstmn displays the difference between each
model’s forecast RMSE and the fitted standard-esfoegression, as a percentage of this SER.
For the linear and smooth-adjustment models tliferénce is over twenty-five percent. But for
the MB&W model it is a mere 0.08 percent. Thusrfra practical or “economic” perspective
the MB&W model is stable, forecasting (out of tletimation sample) with average squared
errors of about the same size as implied by thedfinodel.

These simulation results confirm the validity loé tMB&W derivations. They also imply
for a Miller-Orr (S, s) economy that models will Bistinguished in forecasting and stability.
When estimated within sample a linear model fitarlyeas well as the correct non-linear model.
And since any linear model coefficient variatiormifunction of long-run demand (in the
language of smooth-adjustment, the transition béeiss static), the instability of linear models

should be tested as a function of this variableerathan with respect to time.

5. Issuesin Empirical Application of the Static-Transition Smooth-Adjustment M odel

There are two novel aspects of the MB&W model Whiteate issues not encountered in
applications of standard models (linear or nondime First, to correspond to the underlying
theory, the data must be scaled by some measureéakieasuring (real) money per economic

agent. Second, (and for the same reason) thesstignemodel will not employ logged variables,
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although the form of the function determiniy (long-run demand) will be log-linear. These
two characteristics introduce new and/or magnifeoissues in application. For one, evidence
accumulated elsewhere about the order of integrationonetary data is not directly applicable
to the scaled data employed here. Second, thelermpnamics incorporated into log-linear
models via distributed lags of underlying variakfgsch as differenced interest rates and
income) will not have a natural counterpart in @pplied MB&W form. Third, the dependent
variable of the applied MB&W model will not diregttompare to models written in logs. The

remainder of this section introduces these issuasine detail.

5.1 Scaling and Integration

The functional form derived by MB&W and the simiisas presented above hold the
number of agents constant, so a change in aggregatey is driven by a change in money per
agent. Likewise an increase in long-run holdirsgdriven by an increase in the width of
management intervals (0, H), which drives the npedrity. But in empirical data population
increases, SO an increase in aggregate holdingsnmtde driven by such behavioral changes,
and so need not imply a change in the weight gi@gged money in predicting current money.

A patrtial solution would scale money on a per tapasis. Although an improvement
over no scaling at all, in many applications thil @istort the correct timing. There can be a
twenty year lag between birth and becoming a sigant manager of money and income. This
will be a factor in any economy with variable birtdtes. So in the application below | scale on a
per-household basis. The measure of househo#amisal, so | interpolate quarterly estimates.

Given the large number of studies applied to n@edta or to nineteenth-century data,

other suggestions for scaling may be useful. énUBA the number of households is simply the
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number of occupied housing units. In some cousitienay be possible to model this as a
function of construction and occupancy data. Aerahtive to households would be the adult
population or better, the adult population minws tamber of married couples. If this data is

not directly available, an indirect approach caakk flow data on births, death rates by age, and
net immigration and then integrate to the impliddlapopulation, with the integration constant
estimated via knowledge of the adult populatiosae point within the time period covered.

But for the US data used below, the data on houdel®available for the entire period covered
(1959-2007).

Ignoring time-series issues, the applied MB&W madd be written as a varying-
weight partial-adjustment model (Equation 8), emlg real money per household. Scaling per
household may change integration properties. hsiance, if logged money per household was
1(0), and logged households was 1(1), then logggtegate money equals the sum and would be
I(1). In this case scaling per household wouldaeathe unit root. Use of data scaled in this
manner is not common practice, so for this datdlitbe of interest to test for unit roots in lesgel
and differences.

The Miller-Orr model, and other inventory-theogsied models such as in Baumol
(1952) or Tobin (1956) imply that long-run moneyaig-linear function of the interest rate and
variables measuring flows such as income. Belaswthil be taken to suggest cointegration
between logged real money per household, loggedsieR per household, and a logged interest
rate. Because the aggregates are scaled, thesresabintegration tests may differ from that
found for non-scaled data, and so these are alswerést.

There are additional issues which may matter mesempirical applications but are not

treated here, in part due to space limitationsianhrt because they appear to be unimportant in
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the data used. Although inventory based models asdViller-Orr imply a log-linear form for
the cointegrating relationship, the MB&W form imggithe dependent variable and the error-
correction term will not be log-linear. Thus iktlequilibrium relationship is posited as mhy
+byy +byr, then letting M =exp(m) the MB&W error-correction term will be (M -M*..1), not
the log-linear (my -m «1). In principle the properties of these will diffand the lack of a unit
root in (M. -m 1) does not imply (M -M* 1) is 1(0), likewise forAm andAM.

But in the application below levels of M are lagg@ugh and the differenced variables

are small enough that the two formulations havelaimproperties. In fact the two differences

are highly collinear. Usingjn: as estimated from an Engle-Granger static leweggession,

regressing (+ r?l:) upon (M -I\A/II) (omitting a constant) yields arf Bf over 0.98. And

regressing\m uponAM (again omitting a constant) yields af & 0.97. Given this colinearity,

it should not be surprising that the results ofstésr unit roots are similar for these logged and
non-logged variables. Recently Corradi and Swar(8086) proposed a formal test for choosing
between logged and non-logged measures of potgnhgtgrated variables. But they find their
test requires at least 250 observations to avgitifgiant size distortions. Consistent with the
collinearity just discussed, when they apply thest to US M1 the results do not favor one

measure (logged or non-logged) over the other.

5.2 Dynamics and Interpretability
Further complications are induced by the fact thatmodel of a Miller-Orr economy
will employ non-logged levels of actual and longrmoney (M and M), but the equilibrium or

long-run M is a log-linear function of underlying variablesh as interest rates or income.
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To fix ideas, consider bi-variate and tri-variagses of cointegration amongst logged
variables, and corresponding distributed-lag foatiahs of (logged) error-correction models,
ignoring (excluding) lags of the dependent varialter the bi-variate case, suppose m is
cointegrated with y and the long-run relationstiieg by m = y. Then the equilibrium-
correction form with distributed lags Afy can be written equivalently as including disttdml
lags ofAm’, or ignoring error-terms
AM = -by(Mea -M'a) + 3 044y, = -bo(Mea -Mea) + " cAmy €)
whereq; = G.

With more than two variables the same interpreteais possible, but with an additional
layer of complexity. Suppose now that m is coinaged with y and r, with long-run relationship
m =y +r. Then the equilibrium-correction form widistributed lags oy andAr can still be

written as including distributed lags &fn". Again ignoring error-terms

AM = -by(Mey =M ) + Y oAy + Y biAG ;= -bo(Mey M eg) + > GAM; + > didy, ;. (10)

If in Equation 10 d= 0, then the short-run impact of changes in yrasdhe same as their
impact on the long-run relationship. |0, theno; = G +d and =g, and the relative impact
of changes in y and r differs from that impliedthg long-run relationship, here assumed to be
unitary. Unless for some lagsor b equal zero, including distributed lagsfof andAr is
equivalent to including distributed lags of thefelienced equilibriunAm’, along with one (only)
of the underlying variabled\y or Ar).

The above interpretations are made possible bfattiehat both the long-run

cointegrating relationship and the error-correctiwodel are log-linear. But this correspondence
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does not hold for the MB&W form. Again for notat@&l convenience let the following
coefficients differ from values in other equatiorishen an applied error-correction form based

on Equation 8 is
MM = (Br1)(Mer My -AMy + GAML)), (11)

where for now we can ignore the determinants.of b

Here in this error-correction version of the MB&Verpal-adjustment form the change in the

long-run (AM* and thus in the long ruM) does not equal a linear combinationAyfandAr,

nor of non-logged\Y andAR. One could retairECiAM:_i , and append lags afy andAr, but

there is no meaningful interpretation of the relasihip between the non-logged dependent
variable and differences of the individual variab(eg, r).

Thus in the empirical implementation of the MB&Wobdel | will restrict dynamics to
appending distributed lags of the dependent variabtl of lagged changes in the long-run
equilibrium AM*). This makes the empirical MB&W model less cdewpin its distributed lags
than a log-linear model, but more complex in itsclional form.

Finally, since the dependent variable of the MB&W(del is not a difference of logged
levels, the fitted values and forecasts will nanpare directly to standard models. The errors
being minimized in estimating the applied MB&W mbdee not the errors for logged money.
This difficulty is unavoidable. But when comparitihgg MB&W form to standard log-linear
forms, | think it reasonable to handicap the novedir model, since non-linear estimation has its
additional costs. So when comparing the MB&W mddedbg-linear models, | will transform

the MB&W model predicted values to logged valug#though placing the MB&W model at a
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disadvantage, this seems preferable to comparang tiansformation of values from the log-

linear models.

6. An Empirical Demonstration of the MB& W M odéel

This section presents empirical results for thpl@mentations of the Miller-Orr
motivated non-linear model discussed above, intgdgUS data 1959-2007. This section also
compares the non-linear models to standard logdinedels. Money is measured as real M1
per household (denoted “M” or if logged as “m”) thvincome measured as real GDP per
household (denoted “Y” or “y”). As described irofaote 4, official figures for M1 are fictitious
after 1993, ignoring a large portion of freely ckedale (and insured) deposits as “off the M1
balance sheet”. The Board of Governors is estilgdtiese misreported M1 balances monthly,
and their estimates are added to official M1 inrtieasure used hel®.These adjusted figures
for M1 are nearly identical to those of Cynamontkowsky, and Jones (2006), periodically
updated and published as series M1RS at theiriteglbhstp://www.sweepmeasures.com).
Long-run holdings of real M1 per household (corcesping toM in the theoretical MB&W
derivations) are taken to be a log-linear functéneal GDP per household (y) and the yield on

Treasury Bills of 10-year maturity (r).

6.1 Integration and Cointegration
Table 3 shows the results of ADF tests for thegration properties of the logged per
household data in levels and first-differences.dascribed above, the properties of differenced

non-logged money are also relevant, but in thigesdrwill be very similar to differences of

1% This data is difficult to find using the data pagé the Board and District Banks, but as of Oct@$99 could be
found at http://research.stlouisfed.org/aggreg/sadiaml.
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logged values. For each variable separate testsomducted with and without a constant in the
test regression, and also with a constant andttiemel, corresponding to three separate test
assumptions. In addition, test regression lagselexted via both the Schwarz and Akaike
criteria, for a total of six tests for the null@nit root applied to each variable.

Rather than reporting all the individual tests,dach levels variable Table 3 reports the
minimum probability value across the tests. Ferdifferenced data the maximum probability
value is reported. Thus the nominal p-value regabfor the levels data is “cherry picked” in a
manner that leans towards rejection of a unit (actual test size is greater than the reported p-
value), while the reported results for the differet data are biased towards accepting the unit
root (actual test size is less than the reportedipe). Nonetheless a unit root is clearly acagpte
for the variables in levels (with a lowest p-vabfed.25), while a unit root is rejected for the
differenced variables (with a largest p-value @0®). Although the use of aggregates scaled on
a per household basis is not standard practicegthdts of Table 3 imply these variables have
the properties usually encountered in monetaryiacmwme aggregates.

Table 4 displays Johansen cointegration testtsefar the null of no cointegrating
relationships (versus more than zero) among loggaldV1 per household, logged real GDP per
household, and the logged yield on Treasuries gf¢Ed maturity. Under the null the model is a
differenced VAR, so lag selection is done in thifedenced VAR (no levels included), in which
case the AIC criteria selects two lags, while the &lects one lag. So results are displayed for
both one and two lags. Under both lag-selectider@ Table 4 shows that a null of no
cointegrating relationships is rejected, with (noatj probability values of well under one-

percent. These variables are used in the Englagéraegression of the next paragraph.
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6.2 Whole Sample Estimation of MB&W and Log-Lireaor-Correction Models

The models estimated below employ the same estsdtthe long-run equilibrium,
estimated via an Engle-Granger static levels ragras This ensures that any differences across
models will be due to the differences in functioftam. For this quarterly data 1959.1-2007.4

the levels regression yields
m. = 6.102 +0.36Q0y-0.394¢ (12)
where as above “m” denotes the log of real M1 marskhold “y” denotes the log of real GDP

per household, and “r” denotes the log of 10-yedillTyield. For use in the MB&W modetfn,

is used to definé/l’ =exp(i; ).

Two versions of the MB&W model and three versiohghe log-linear error-correction
model will be estimated. Starting with the MB&Wriiaulation, the most unrestricted model will

add lags of the dependent variable to the comparatatics model of Equation 11, with the

equilibrium-correction coefficient replaced by terying and non—IineaEXP(co/(M:)z). | treat
the weighting of all lags oAI\A/II as non-constant, since all are relevant for theameedistance

of actual money from the long-run equilibriul@h:. But the specifications incorporate linear

combinations of the lagged dependent variablensu it is possible to create a specification

with uncorrelated errors (a linear measure):

AN, = (EXPlcy/(M})2) -1) (Mt -Wy -ANE, + S baNt ) + 3 diaM, . +; (13)
i=0 i=1

A second version of the MB&W applied model impo#esrestriction p=0, forcing the
weighting of-AI\?II in Equation 13 to equal the weighting of the eworrection term. This

implies the partial-adjustment form of the compiaeastatics model holds as in Equation 4, in
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the limited sense that the model is equivalentnitting the contemporaneous changd\?lﬁ and

writing the equilibrium-correction term asd My, since (M1 -Myy -AM; ) = (M1 -M}).
Three versions of a log-linear model are estimateith two of the versions restricted to

include only the variables allowed the MB&W form&gain letting coefficients (and errors)

differ across equations, the unrestricted log-limeadel is

AM; = -boer{Mey - Mg -Af) +D bAML Y g +> didm,; +. (14)
i=0 i=0 i=1

Restricting Equation 14 to omit the lags of thierast rated; =0) forces it to include
only variables corresponding to those of the leastrictive MB&W form of Equation 13.
Additionally imposing b =0 forces the use of only variables included mnfore restricted
version of the MB&W model.

Tables 5 and 6 display full-sample estimation ltsfor the MB&W and log-linear
models, with lags selected to minimize the AICThe model versions in the first two columns
of the two tables correspond in the sense thab(béég selection) they employ the same
variables. The final column of Table 6 includes timrestricted log-linear model, which has no
equivalent among the MB&W forms due to includin§ehences of the interest rat&r] as
dynamic variables, apart from differences of thaested equilibrium.

Starting with the first and second row of resuiteach table, minimizing the AIC results
in retaining the same number of lags (two) in the equivalent MB&W and log-linear models,
with a total of five or six coefficients to estireatBut the otherwise unrestricted log-linear

model of Table 6 retains three lags. Since thidehmcludes separate changes of the interest

7 Initially I included six lags, which given the gimal data starting in 1959.1 meant starting edtnawith 1960.4.
Across models with this starting date at most tagslwere retained, so for the results reportedahgple started
with 1960.1, with three lags included before sétecfor lag-length.
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rate in addition to the variables of the other nigdiis results in twelve estimated coefficients,
twice that of the other models.

The third row of Tables 5 and 6 displays the (&lisp value of the estimated weight on
the equilibrium-correction term. In the MB&W modehis varies, so the mean and (sample)
range is displayed. The mean values for the tw&WMBmodels (0.036 and 0.042) is close to
that of the corresponding log-linear models (0.88d@ 0.044) and the unrestricted log-linear
model (0.035). But for the MB&W models the weiglaries between as little as 0.018 (for the
first MB&W form) and as much as 0.079 (for the setd/IB&W form). More detail on the
varying MB&W coefficient weights is found in FiguBs which displays time series for each of
the estimated models. Because this weight is etitmof long-run holdings, it follows a path
very similar to the path of monetary velocity.

The fourth row of each table displays the coeffitifor the contemporaneous change in

the long-run equilibrium, as it differs from theugldorium-correction weighting needed to imply
partial-adjustment from  to contemporaneou$\7(: ). If partial-adjustment holds, theg $0.

For the models of the first column (which includpivalent variables), the mean value for the
MB&W model (Table 5) is close to zero in magnitwedel close to the fixed value displayed in
Table 6 for the log-linear model (respectively @G@hd 0.034). But for the unrestricted log-

linear model of the last column of Table 6, theneate is a much larger 0.444. The fifth row
displays the sum of estimates for the remainingdédgchanges i . Again for the restricted

models this is closer to zero than for the unretgtd log-linear model. The mean values for the
MB&W models of Table 5 are 0.131 and 0.110, whilethe equivalent log-linear models are
respectively 0.148 and 0.144. But for the unretgd log-linear model the value is farther from

zero, in this case -0.400. So in the unrestriotedel the dynamic reaction to changes in the
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long-run equilibrium is stronger and more compleart in the restricted models. As is about to
discussed, =0 is rejected in the log-linear models but aceéph the MB&W model. So the
log-linear model selects for more complex dynarties the MB&W model.

In Tables 5 and 6 the third-row from the bottorspiays the probability value of log-
likelihoods tests for restrictions imposed, as agfaihe least restricted version. In Table 5 the p
value for 3 =0 is 0.167, so for conventional test size thstrietion is accepted. The same row
of Table 6 displays tests for the restrictions,isgfahe un-restricted model of the far right
column. Here the p-value for omitting separatenges of the interest rate; €0) is under 5%
(0.021). The model of the second column includegbles equivalent to those of the more
restricted MB&W modeld; = by =0) and here the p-value is again under 5% (0.0M6X shown
are estimation results for the log-linear modeludng lags of the differenced interest rate
(unrestrictedy; ) but imposing p=0. This was also rejected, with a p-value of lisn one
percent. And testing a null af = 0 ora; =y = 0 (but retaining three lags as in the unregdct
model) against the model of the far-right columelged p-values of well under five-percent.

Finally, the last row of Tables 5 and 6 displays SER of the models. For comparison
to the log-linear models, the fitted values of iB&W models are transformed to logged
equivalents, as described above and in the noféalile 5. Since restrictions of the log-linear
model are rejected, and restrictions of the MB&Wdelaare accepted, consider these two
models (the far right columns of each table). dgeequivalent ser of the restricted MB&W

model is 0.00674, a bit larger than the linear nhade of 0.00669.
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6.3 Stability and Forecasting
In the simulation results, we found that linead aon-linear regression models of a
Miller-Orr world would have very similar fits withisample. The difference between the

modeling approaches was found in stability anddaséng, particularly if the sample was

divided with respect to the level of long-run holgs (herel\?l* ). Hence this section compares
stability and out-of-estimation-sample forecasting.

Although restrictions were rejected, | continusshow results for all the log-linear
models for two reasons. Not all nominal p-valuesenless than one-percent, and statistic
distributions are asymptotic, so there is roondiffierences of taste and judgment. And for
forecasting purposes simpler models are often pesfé®

Table 7 displays the results of stability testewkhe sample is split with respect to
whether the estimated Iong-ruh: (of Equation 12) is greater or less than its medidere |

display simple analysis-of-variance F-tests, asd dkelihood-ratio tests which require adding
non-linear terms to each model, replacing eachfic@sft b with the term b°, where D is a (0,
1) dummy splitting the sample.

For simple F-tests, the p-values for both versafitbe non-linear MB&W model are
well over ten-percent, 0.414 and 0.254 for bothuheestricted and restricted models of Table 5.
Results for the log-linear models depends uporsasttest size. The first linear model (third
row) is most relevant, because the restrictiorth@fther log-linear models were rejected. For

this model the F-test p-value is 0.085, over figeegnt but under ten percéfit.

18 |n this application it turns out that lags seledi® minimize the more parsimonious sic resultmadels with
larger forecast errors.

19 Recall that this model retains twelve variablas;ontrast to the five or six variables of the ottmedels (both
linear and MB&W).
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In Table 7 results of the likelihood-ratio tests aimilar, except that p-values are closer
to zero. This does not matter for the non-line&&YMV models, where p-values are still well
over ten-percent (0.353 and 0.209) for the MB&W rlef Table 5. But the p-value for the
unrestricted linear model is now 0.050. So stihidi clearly accepted for the non-linear
MB&W model, but depending upon tastes could bectepkfor the unrestricted log-linear
model.

Table 8 displays analogues of the simulation stfdyable 2. Each model is estimated
over one half of the sample, with estimated coigffits used to generate forecast values for the

remaining samplé® But as in Tables 2 and 7 the sample is split véipect to the level of long-
run demand I@I: ), not time. Comparing forecast results to theltef re-estimation in the

forecast sample can be seen as a measure of thengicanagnitude of any instability, although
in these small samples this is convoluted withestion error.

The first two rows of Table 8 show results for the versions of the MB&W model.
The forecast RMSE of the two are very similar, 8%dr the least-restricted and 82.41 for the
more restricted version. Moving to the second rwiwf results, when the MB&W models are
re-estimated over the forecast sub-sample, thelatdrerrors of the models are 80.34 and 79.97,
again very close. More importantly, the differehetween the forecast RMSE and the re-
estimation SER is only 2.2% and 3.1%. This isdatfan the difference found in Table 2, but
of course estimation in Table 2 was over samplé®d00 observations, and in a simulated
world of literal Miller-Orr structure.

The last three rows of Table 8 display the foreaasd re-estimation results for the log-

linear models (of Table 6). Here the table staith the least restricted model (as in the far

20 As in the simulation study the forecasts empldyalcvalues of the lagged dependent variable.



34

right-hand column of Table 6), and then displaysrésults for the more restricted versions.
Again the forecast rmse’s are very similar, 0.00682006799 and 0.00636 as we go from least
to most restricted log-linear model. And amongltelinear models the forecast sample model
standard errors are similar. But again comparmgdast RMSE to the ser of the re-estimated
model, the differences are 19.9%, 15.5% and 16.8%ile not as large as in the simulated
Miller-Orr economy of Table 2 (where the differernwas over 25%), this is still much greater
than for the MB&W models.

The final column of Table 8 allows comparisontoé forecasts of the non-logged
MB&W models to the forecasts of the log-linear migdeTransforming the forecasts and then
forecast errors of the MB&W models to log-equivasglyields an RMSE of 0.005895 and
0.005877. Comparing to the RMSE of the log-lineadels (from the first column) these are
about 15% smaller. Thus the statistical instabditthe log-linear models is economically
relevant, in the sense that their ability to fittbewithin sample does not carry over to forecast
performance, especially when compared to the MB&Wdehs designed for a Miller-Orr (S, s)

economy.

7. Conclusion

The recent applied literature provides empiricgdort across many countries and time
periods for non-linear smooth-adjustment modelsiofiey. It has been assumed that this
empirical evidence is consistent with monetary thidecause the Miller-Orr model provides
economic motivation for standard smooth-adjustneempirics. But this paper shows the
intuitive arguments used in the smooth-adjustmétlture are only partially correct. Most

critically, in a Miller-Orr economy a divergence mbney holdings from long-run values does
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not predict the probability or portion of accouatjusting to target levels. Standard smooth-
adjustment models can improve on linear models Vit to the aggregate data of a Miller-
Orr economy, but exhibit instabilities which undgréorecasting ability, particularly across
regimes with differing long-run demand.

The non-linear model theoretically implied by MitOrr behavior is found in the
Milbourne, Buckholtz and Wasan functional form.thdugh it can be described as a modified
smooth-adjustment model, it is of much simpler fahan that of standard smooth-adjustment
models, with only one extra coefficient (beyondttbiaa linear model) to estimate. The
transition variable derived by MB&W is a static é&¢yvand it has not been understood that the
theory underlying the derivations of MB&W is essalty static, in contrast to the dynamic
language and transition variables used in the dmadjustment literature and in the language
used in MB&W'’s own discussion. This paper has mest some heuristics for the support of
useful intuition and has used simulations to vaédae MB&W derivations.

A unique characteristic of the Miller-Orr worldtisat the non-linearity which emerges in
the comparative-statics context involves a lagggueddent variable. This is due to aggregation
and the fact that in most monetary exchanges thehasge in money held is zero. This aspect
of the Miller-Orr economy is unlikely to apply taher (S, s) contexts. But under aggregation it
was found that the variable subject to (S, s) mamemt will differ from its average or long-run
value without implying that more agents than usuwealclose to making an adjustment. This
characteristic of the monetary Miller-Orr economgynapply in other non-monetary (S, s)
contexts such as menu-cost pricing models.

Taking the Miller-Orr world seriously implies artensive agenda for applied modeling.

One implication is that models are distinguisheth&ir stability and forecasting properties, not
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by their within-sample fits. But the alternatiwestable coefficients should be instability with
respect to the transition variable rather tharaioitity with respect to time. Hence traditional
break-point stability tests neglect the importamehsion. Empirical models inspired by a
Miller-Orr economy must control for population grihwyusing variables which come as closely

as possible to per-agent measures. For recenatdSatal households appears to be an adequate
scaling factor, but other contexts may require sargenuity to find a useful scaling device.

And applied models inspired by the Miller-Orr (3,v8rld will employ non-logged variables,

which interjects interesting issues of integratooperties.

In a short empirical demonstration in US quarteidya, the MB&W static-transition
model performs as predicted by theoretical and lsitimn results. Unlike log-linear models it is
unambiguously stable. And the MB&W model forecagith smaller RMSE than log-linear
models. Lag-selection criteria and tests of retstms imply retention of many more variables in
the log-linear models. So despite its non-lineamfthe applied MB&W model is relatively
simple, employing half as many variables. It remab be seen whether this holds for other

time periods and countries previously consideretthénliterature.
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Figurel
Probability distribution of (discrete) Miller-Orrhdings and empirical frequency

of balances (m) with total M ¥ consistent with smooth-adjustment
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Figure2
Counter-example to smooth-adjustment intuition:

Empirical frequency of balances (m) with total M
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Figure3
Time series of estimated MB&W varying error-correntweight (Equation 13).
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Tablel
Attempted modeling of the portion of Miller-Orr ammts adjusting towards targets) (p
Restrict to
constant only Model fit

Model Model form (P-value) (R
Smooth-Exponential pr = by +bi(eXp(B[M i - M +b3]?)) 0.0582 0.00748
Smooth-Logistic P = by +hy[1 +exp(B(M - M +by))]? 0.388 0.00303
Linearl p= by +b M -M ]2 0.706 0.000143
Linear2 p = by +by M- M | 0.579 0.000309

Notes: P-value is for all;l=0 except for p(could always rejectyb=0 for test size less than 0.0001). Coefficients
(by) across equations differ in value. Simulation gksize is 1,000 observations recorded everygeéitiod,
allowing for the lag the regression sample sizbés 999. The dependent variablg {gthe portion of accounts
breaching management interval thresholds from tHneo time t in the simulated economy of 20,0001é4Orr
accounts. These results are for (0, Z, H) = (0,300 and k = 10, for which the weight on laggechewin the

partial-adjustment model of Equation 3 is approxeha0.8. The regressortM-M is the difference between
actual and expected total money holdings (2000B}%ZResults were similar {R1.2%) for k = 1, 2, ...5, 10, 15,
20 and z =5, 10.
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Table2
Linear versus non-linear models of a Miller-Orr ecmy:
Stability and forecasting in 140,000 observatiohsimulated data.

Mi = bM¢1 +(1 'h)mt +g¢

SER
Forecast Re-estimation over
Model RMSE forecast sample Difference
Linear (k constant): 467.68 365.43 28.0 %
Smooth-Exponential:
b = ¢ +cexp[-G(Me1 - M ¢ -C3)?] 472.05 364.00 29.7 %

Smooth-Logistic:

by = @ -c/[1 +exp(-¢(Me1 - M ¢ -C3))] 452.84 364.57 24.2 %
MB&W (Theory-based): ,

b= exp(@/ M) 359.45 359.16 0.08 %

Notes: Data is from simulations of fourteen reggmé&10,000 observations each. Across regimeseas
(Z, H) are controlled to imply a weight on laggedmey (k) which varies as 0.30, 0.35, ...0.95. To generate
forecasts models are first estimated over the seegimes with smaller a total of 70,000 observations.
Estimated coefficients are then used to forecagterother half of the data. The first column mépooot-
mean-squared errors of this forecasting exerci$e second column shows the estimated model varianc
when the models are re-estimated in this otherdfalie data. For these large samples instalufityery

small magnitudes will be statistically significahgnce this table reports the magnitude of modghbility via
the difference between forecast RMSE and the estihféted-model standard-errors.
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Table3

Integration of scaled (per household) aggregatds an
Treasury yield (10-year) 1959-2007:

ADF tests across assumptions and lag criteria.

Min p-value
Levels variables across tests
m (Log real M1/H) 0.78
y (Log real GDP/H) 0.25
r (Log 10-year Treasury) 0.53
Max p-value
Differenced variables across tests
Am 0.005
Ay less than 0.001
AM (MB&W dependent) less than 0.001
Ar less than 0.001

Notes: Before differencing and lag-truncation datquarterly 1959.1-2007.4.
Test regressions are constructed with both min 24@ min SIC lag criteria,
and with and without a constant or constant anmufitrd_ags retained varied
between seven and zero. Results are as calclgtediews, which employs
probability values from MacKinnon (1996).
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Table4
Johansen Cointegration Tests
Logged real M1 per household, RGDP per househeidyéar treasury yield, constant

VAR Trace statistic Probability
lag criteria Lags retained (No cointegrating vectors) value
AlIC 2 42.08 0.008
SIC 1 50.58 less than 0.001

Notes: Probability values are less than 10% fardhhrough six lags. The aic and sic lag seledtideria
were applied to a differenced VAR, which is thereot model under the null of no cointegration. URissare
calculated using Eviews, which takes p-values fMatKinnon, Haug and Michelis (1999). The singlg-la
test equation also rejected one or fewer cointegyatlationships (p-value less than 5%), but ¢hisnot hold
for tests with additional lags.
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Table5
Estimation of MB&W models 1960.1-2007.4

AN = (EXPlcy/(M13)2) -1)(Mat -Ky 8N, + S baN: ) + 3 daM, ;e

i=0 i=1

Unrestricted Imposeyl= 0
Lags retained (min aic) 2 2
Estimated coefficients 6 5

A

-Beemy = (EXPlE0/(M)?) -1)
- E)ecm(t) (mean’ min, max) (0036, 0.018, 0068) (0042, 0.021, 0079)

~

becm(t)*bo (mean’ min’ max) (0030, 0015, 0057) “
Becm(t)* Zbl (mean, min’ max) (0131, 0065, 0247) (0110, 0055, 0208)
i=1

Zdi 0.649 0.648
i=1
AR(1) (p-value) 0.34 0.92
AR(4) (p-value) 0.38 0.50
ARCH(1) (p-value) 0.63 0.81
ARCH(4) (p-value) 0.75 0.78
Restriction (P-value) - 0.167
R 0.648 0.645
SER 78.04 78.22
log equivalent ser 0.00673 0.00674

Notes: The log-linear equivalent ser is calculdtgdransforming non-logged fitted values as
Am; =In(AM +M ;) - M 4. ThenAm, -Am is treated as a residual, with the sum of squdiréded by the

degrees of freedom to calculate the (estimateafltg-equivalent model variance. Restriction psea are from

log-likelihood tests. ARCH p-values are from En@l882) chi-squared LM-tests. AR p-values are fi@mausch-
Godfrey (chi-squared) LM-tests.
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Table6
Estimation of log-linear models 1960.1-2007.4

AMy = -Den(Mes - Mg -Af) +Y bAML > adn +> didm,; +

i=0 i=0 i=1
Restrictions
0,=0 0,=0,=0 None
Lags retained (min aic) 2 2 3
Estimated coefficients 6 5 12
becm 0.037 0.044 0.035
bo 0.034 - 0.444
Z;, b, 0.148 0.144 -0.400
Zai - - -0.065
i=0
;di 0.628 0.628 0.648
AR(1) (p-value) 0.080 0.455 0.798
AR(4) (p-value) 0.058 0.132 0.384
ARCH(1) (p-value) 0.430 0.800 0.452
ARCH(4) (p-value) 0.021 0.090 0.103
Restrictions (p-value) 0.021 0.017 -
R? 0.644 0.640 0.671
ser 0.00684 0.00686 0.00669

Notes: Tests are as in Table 5, except that shceetained lags differ across models the testefatee stated
restrictions plus the lag restriction imposed g &tic. For instance, for the model of the firduomn the test is for
ap =0y =0, =0z =d; =0 versus the three-lag model of the right-haridroo. Retaining the three lags of the
unrestricted model and separately testing the thudle by =0, 051,3=0, =00 123= 0, yielded p-values of
respectively 0.008, 0.028, and 0.020.
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Table7
Stability test probability values.

Sample split with respect to level of Iong-rlﬁﬁ .

Model F (anova) Likelihood-ratio
MBW (o; = 0) 0.414 0.353
MBW (0 = 0, ky = 0) 0.254 0.209
Log-linear 0.085 0.050
Log-linear @; = 0) 0.020 0.022
Log-linear ¢; =0, ly = 0) 0.011 0.010

Notes: Models are the same as in Tables 5 andt®dve the unrestricted MB&W model of
Table 5 is denoted as imposiag= 0 (as it omits separate changes of the intea¢s). Sample is
split depending on whether the estimated long-quilierium from the Engle-Granger static
levels model (Equation 12) is below or above itsliae, almost all the lower values are within
1969.1-1992.2. Likelihood-ratio tests are basechueplacing any coefficient (b) by the term
b*b®, where the exponent “D” is a (0, 1) dummy splijtihe sample, and the stability nulkisO.



Table8

Forecast RMSE: Estimation sampﬁa: < its median, forecasts in the remaining data.

Forecast
rmse SER
(rmse logged  Re-estimation over

Model equivalent) forecast sample Difference
MBW (o; = 0) 82.11 80.34 2.2%

(0.005895)
MBW (0; = 0, y = 0) 82.41 79.97 3.1%

(0.005877)
Log-linear 0.006821 0.005688 19.9%
Log-linear @; = 0) 0.006799 0.005885 15.5%
Log-linear ¢; =0, b = 0) 0.006836 0.005853 16.8 %

Notes: Models are the same as in Tables 5 andiB-s&mples are the same as in the stability téStakde 7.
If the SIC is used for lag selection, then resaftssimilar but forecast rmse’s are equal or lardethe first
column forecasts of the non-logged MB&W model asmsformed to a logged equivalent as describelden t

notes to Table 5. These can be compared to thénlegr model forecast rmse.



