Converting From A Present Value Lump Sum To A Future Payment Stream

Michael L. Brookshire and Thomas R. Ireland*

I. Introduction

The objective of our original research was to correct a problem in the calculation of hedonic damages. We have found several applications in forensic economics, which are discussed below. They require the derivation of a start-of-the-period, annual amount, which when projected by a known (net) discount rate produces a present value that is also known.

Let us illustrate the problem with an application that occurs (but rarely), derive the formula, and then move to several applications. Assume that, as an economist for the defense, one is reviewing the conclusions of a plaintiff's economist about the present value of a lost earnings stream. You know the economist's projected present value, that he or she is using a constant wage growth factor of 4% per year and a discount rate of 5.5%. You also know that the economist is using a worklife expectancy of 20 years. What you don't know and need is the value of the base starting-income figure in the current year, from which he or she projects the future income stream and the present value. This base figure may be critical to criticisms of the plaintiffs economic loss projections.

II. The Algebraic Derivation of the Formula

It should be emphasized, and is clear in what follows, that we are developing a formula for a beginning of the period value in the first, forecast period. ${ }^{1}$ Start with the present value formula for a payment stream with a constant growth factor g, a constant discount rate i, a number of annual payments n, and a base starting figure a, as follows:
1)

$$
P V=\sum_{j=0}^{n-1} a r^{3}
$$

where r represents the net discount rate ${ }^{2}$, or

[^0]2)
$$
\mathrm{r}=\frac{1+\mathrm{g}}{1+\mathrm{i}}
$$

Given the values of $\mathrm{PV}, \mathrm{g}, \mathrm{i}$, and n , solve for a , and rearranging 1),
3)

$$
P V=a \sum_{\mathrm{J}=0}^{\mathrm{n}-1} \mathrm{r}^{\mathrm{j}}
$$

and note that,
4)

$$
\mathbf{r}_{\mathrm{j}=0}^{\mathrm{n}-1} \mathbf{r}^{\mathrm{j}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathbf{r}^{\mathrm{j}}=\sum_{\mathrm{j}=0}^{\mathrm{n}-1} \mathbf{r}^{\mathrm{j}}-1+\mathbf{r}^{\mathrm{n}}
$$

therefore,
5)

$$
\mathbf{r}_{\mathrm{J}=0}^{\mathrm{n}-1} \mathbf{r}^{\mathrm{j}}=\sum_{\mathrm{J}=0}^{\mathrm{n}-1} \mathbf{r}^{\mathrm{j}}-1+\mathrm{r}^{\mathrm{n}}
$$

6)

$$
(\mathrm{r}-1) \sum_{\mathrm{J}=0}^{\mathrm{n}-1} \mathbf{r}^{\mathrm{j}}=-1+\mathrm{r}^{\mathrm{n}}
$$

7)

$$
\sum_{\mathrm{j}=0}^{\mathrm{n}-1} \mathrm{r}^{\mathrm{j}}=\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}
$$

Thus,

$$
P V=a\left(\frac{1-r^{n}}{1-r}\right)
$$

and solving for a
9)

$$
a=\frac{P V(1-r)}{\left(1-r^{n}\right)}
$$

Thus, if $\mathrm{PV}=\$ 350,000, \mathrm{n}=20$ years, $\mathrm{g}=4 \%$, and $\mathrm{i}=5.5 \%, \mathrm{r}$ is the net discount rate as in 2) and equals 0.98578 .
10)

$$
\mathrm{a}=\begin{gathered}
\$ 350,000(1-0.98578) \\
1-(0.98578)^{20}
\end{gathered}=\$ 19,982
$$

Table 1 shows the annual payments and cumulative present values derived from this solution for the value of the base at $\$ 19,982$ in 1993, with 20 annual payments commencing in 1993. As indicated in the table, the cumulative present value for the 20 -year period is $\$ 350,006$, the $\$ 6.00$ be-

Brookshire and Stan Smith, Economıc/Hedonic Damages. The Practıce Book for Plaintıff and Defense Attorneys, Cincinnati: Anderson, 1990, Chapter 3
ing a result of tiny rounding errors. The fact that the calculation achieves the starting present value of $\$ 350,000$ is the test of the validity of the formula.

Table 1
Annual Payments from a 1993 Base $\$ 19,982^{*}$
With a 4\% Wage Increase and 5.5\% Discount Rate

Year	Index	Earnings	Present Value	
1993	1	$\$ 19,982$	$\$ 19,982$	Cumulative 1994
19,982				
1995	3	$\$ 20,782$	$\$ 19,698$	$\$ 39,681$
1996	4	$\$ 21,613$	$\$ 19,418$	$\$ 59,099$
1997	5	$\$ 23,478$	$\$ 19,142$	$\$ 78,241$
1998	6	$\$ 24,312$	$\$ 18,870$	$\$ 97,111$
1999	7	$\$ 25,284$	$\$ 18,602$	$\$ 115,713$
2000	8	$\$ 26,296$	$\$ 18,077$	$\$ 134,050$
2001	9	$\$ 27,347$	$\$ 17,819$	$\$ 169,127$
2002	10	$\$ 28,441$	$\$ 17,566$	$\$ 187,512$
2003	11	$\$ 29,579$	$\$ 17,316$	$\$ 204,828$
2004	12	$\$ 30,762$	$\$ 17,070$	$\$ 221,899$
2005	13	$\$ 31,993$	$\$ 16,827$	$\$ 238,726$
2006	14	$\$ 33,272$	$\$ 16,588$	$\$ 255,314$
2007	15	$\$ 34,603$	$\$ 16,352$	$\$ 271,667$
2008	16	$\$ 35,987$	$\$ 16,120$	$\$ 287,787$
2009	17	$\$ 37,427$	$\$ 15,891$	$\$ 303,677$
2010	18	$\$ 38,924$	$\$ 15,665$	$\$ 319,342$
2011	19	$\$ 40,481$	$\$ 15,442$	$\$ 334,784$
2012	20	$\$ 42,100$	$\$ 15,222$	$\$ 350,006$

[^1]
III. Some Applications

Besides the defense-side use of our conversion formula to determine the plaintiff's annual base, several other applications of this tool are as follows:

1) Correcting a calculation problem that is not addressed in Economic /Hedonic Damages (Brookshire and Smith, 1990). ${ }^{3}$
2) Conversion of a settlement offer into an implied payment stream with an annual CPI adjustment for each future year.
[^2]Table 2
Present Value of the Lost Pleasure of Life of Jack Doe 1989-2028 With a 1.29% Real Growth Rate and 3.13\% Real Discount Rate

		Value of	Discount	Present	
Year	Age	Life	Factor	Value	Cumulate
1989	36	$\$ 86,764$	1.00000	$\$ 86,764$	$\$ 86,764$
1990	37	$\$ 87,883$	0.96965	$\$ 85,216$	$\$ 171,979$
1991	38	$\$ 89,017$	0.94022	$\$ 83,695$	$\$ 255,675$
1992	39	$\$ 90,165$	0.91169	$\$ 82,202$	$\$ 337,877$
1993	40	$\$ 91,328$	0.88402	$\$ 80,735$	$\$ 418,612$
1994	41	$\$ 92,506$	0.85719	$\$ 79,295$	$\$ 497,907$
1995	42	$\$ 93,700$	0.83117	$\$ 77,880$	$\$ 575,788$
1996	43	$\$ 94,908$	0.80594	$\$ 76,491$	$\$ 652,278$
1997	44	$\$ 96,133$	0.78148	$\$ 75,126$	$\$ 727,404$
1998	45	$\$ 97,373$	0.75777	$\$ 73,786$	$\$ 801,190$
1999	46	$\$ 98,629$	0.73477	$\$ 72,469$	$\$ 873,659$
2000	47	$\$ 99,901$	0.71247	$\$ 71,176$	$\$ 944,836$
2001	48	$\$ 101,190$	0.69084	$\$ 69,906$	$\$ 1,014,742$
2002	49	$\$ 102,495$	0.66988	$\$ 68,659$	$\$ 1,083,401$
2003	50	$\$ 103,817$	0.64955	$\$ 67,434$	$\$ 1,150,835$
2004	51	$\$ 105,157$	0.62983	$\$ 66,231$	$\$ 1,217,066$
2005	52	$\$ 106,513$	0.61072	$\$ 65,049$	$\$ 1,282,116$
2006	53	$\$ 107,887$	0.59218	$\$ 63,889$	$\$ 1,346,004$
2007	54	$\$ 109,279$	0.57421	$\$ 62,749$	$\$ 1,408,753$
2008	55	$\$ 110,689$	0.55678	$\$ 61,629$	$\$ 1,470,383$
2009	56	$\$ 112,117$	0.53988	$\$ 60,530$	$\$ 1,530,912$
2010	57	$\$ 113,563$	0.52350	$\$ 59,450$	$\$ 1,590,362$
2011	58	$\$ 115,028$	0.50761	$\$ 58,389$	$\$ 1,648,751$
2012	59	$\$ 116,512$	0.49220	$\$ 57,347$	$\$ 1,706,099$
2013	60	$\$ 118,015$	0.47726	$\$ 56,324$	$\$ 1,762,423$
2014	61	$\$ 119,537$	0.46278	$\$ 55,319$	$\$ 1,817,742$
2015	62	$\$ 121,079$	0.44873	$\$ 54,332$	$\$ 1,872,075$
2016	63	$\$ 122,641$	0.43512	$\$ 53,363$	$\$ 1,925,438$
2017	64	$\$ 124,223$	0.42191	$\$ 52,411$	$\$ 1,977,849$
2018	65	$\$ 125,826$	0.40910	$\$ 51,476$	$\$ 2,029,324$
2019	66	$\$ 127,449$	0.39669	$\$ 50,557$	$\$ 2,079,882$
2020	67	$\$ 129,093$	0.38465	$\$ 49,655$	$\$ 2,129,537$
2021	68	$\$ 130,758$	0.37297	$\$ 48,769$	$\$ 2,178,307$
2022	69	$\$ 132,445$	0.36165	$\$ 47,899$	$\$ 2,226,206$
2023	70	$\$ 134,153$	0.35068	$\$ 47,045$	$\$ 2,273,251$
2024	71	$\$ 135,884$	0.34004	$\$ 46,205$	$\$ 2,319,456$
2025	72	$\$ 137,637$	0.32972	$\$ 45,381$	$\$ 2,364,837$
2026	73	$\$ 139,412$	0.31971	$\$ 44,571$	$\$ 2,409,408$
2027	74	$\$ 141,211$	0.31001	$\$ 43,776$	$\$ 2,453,185$
2028	75	$\$ 143,032$	0.30060	$\$ 42,995$	$\$ 2,496,180$
2029	76	$\$ 144,878$	0.29147	$\$ 42,228$	$\$ 2,538,408$
2030	77	$\$ 146,746$	0.28263	$\$ 41,475$	$\$ 2,579,8382$
2031	78	$\$ 148,639$	0.27405	$\$ 40,735$	$\$ 2,620,617$
2032	79	$\$ 150,557$	0.26573	$\$ 40,008$	$\$ 2,660,625$
2033	80	$\$ 152,499$	0.25767	$\$ 39,294$	$\$ 2,699,919$

3) Demonstration of how closely a proposed property allocation to a wife in a divorce action compares to her lost earnings through forbearance of career earning capacity during the marriage. Each of these three applications is briefly discussed below.

IV. Hedonic Damages Calculations

While the two authors disagree on several aspects of "value of life" testimony, an important application of the above is to correctly derive a stream of annual hedonic losses from a present value sum that represents hedonic losses. The problem may be seen with reference to the "Sample Death Case" from Economic / Hedonic Damages (Brookshire and Smith, 1990). The original calculation table is replicated in the Appendix, and corrected values under our suggested conversion are shown in Table 2 of this paper.

In the Brookshire-Smith hypothetical, $\$ 800,000$ in lost earnings have been subtracted from a hypothetical "value of life" estimate of $\$ 3,500,000$ to obtain a remaining value of $\$ 2,700,000$ for the lost enjoyment of life. This value is then divided by an assumed life expectancy of 45 years to generate an annual "hedonic" life value of $\$ 60,000$ per year. This $\$ 60,000$ per year figure is then assumed to have an annual real growth rate of 1.29% and is discounted at a real discount rate of 3.13%.

The problem here is that the $\$ 2,700,000$ is a present value sum, derived from studies showing workers' and/or consumers' current willingness to pay to be equal to $\$ 2,700,000$ to preserve the enjoyment of one human life, presumably in the near future. Since this figure is already a present value, it should already be equal to the value of life enjoyment for a person with an average life expectancy, as in the example. By dividing by 45 and then adjusting for a growth factor and a discount rate, the present value in the example turns out to be $\$ 1,709,842$. However, using our formulas, the value of r in our equation 2) should be 0.98216 and the value of a in equation 9) should be $\$ 86,764$. When we replace $\$ 60,000$ in the example with $\$ 86,764$, we find a present value of $\$ 2,496,180$ instead of $\$ 1,709,842$.

Our Table 2 continues for five years beyond the life expectancy of Jack Doe in the hypothetical example. This is simply to show that if we assumed that Jack Doe had an average life expectancy of 45 years instead of a 40year life expectancy, our total present value of $\$ 2,699,919$ virtually equals the $\$ 2,700,000$ value of life estimate from which our annual life enjoyment figures were calculated.

V. An Assessment Tool for Settlement Offers

Forensic economists are sometimes called upon to evaluate settlement offers. Our simple formulas can be used to simulate an expenditure stream from a specific settlement offer so that a plaintiff's attorney could reasonably assess whether or not a given settlement offer could meet his client's needs. Assume the following circumstance: The defense has offered a cash settlement of $\$ 800,000$. For a permanently disabled plaintiff, what rate of sustainable annual expenditures in constant purchasing power over 33 years of remaining life expectancy would this settlement offer imply? Assume further that the forensic economist believes that a net discount rate of 2% is the appropriate difference between the cost of living increase factor and the appro-
priate discount rate. This would imply that r in equation 2) equals 0.98039 and that a in equation 9) equals

$$
\begin{gather*}
\$ 800,000 \times(1-0.98039) \\
1-(0.98039)^{33}
\end{gather*}
$$

or $\$ 32,696$ per year in current dollars.
This would mean that the forensic economist could offer the plaintiff and the plaintiff's attorney the suggestion that the $\$ 800,000$ settlement offer would be equivalent to an offer of $\$ 32,696$ per year in current purchasing power, which would then increase by the real rate of growth that lies behind the 2% net discount rate.

VI. Divorce Forbearance Valuation

A somewhat similar application might be found with respect to a given proposal for maintenance in light of a homemaker's forbearance of career development opportunity. Suppose, for example, that the attorney for the husband has proposed that a husband make five years of maintenance payments at $\$ 10,000$ each. The attorney for the wife wishes to have the judge view that proposal as being equivalent to a wife's reduction in earning power during the marriage. Assume further that the wife is at age 45 and that the comparison is being based on an assumption that the wife would retire at age 65. Make the further assumption that wages will be expected to increase at a nominal 4% per year and that the selected discount rate is 6\% per year.

The first calculation will be to determine the present value of the maintenance proposal. The value of these payments at a 6% discount rate is $\$ 42,124$. This then becomes the PV value in equation 9). The value of r in equation 2) is 0.981132 . Therefore, the value of a equals

$$
\begin{gather*}
\$ 42,124 \times(1-0.981132) \\
1-(0.981132)^{20}
\end{gather*}
$$

or $\$ 2,508$ per year in forbearance in the current year. If it had already been shown by a vocational expert, for example, that the wife's loss in earring power would start at $\$ 8,000$ per year, the above demonstration that a given proposal was equivalent to only $\$ 2,508$ per year might be useful.

VII. Summary and Conclusion

A formula has been provided for converting from a present value lump sum to a future payment stream, and four applications in forensic economics have been identified and discussed. It is likely that readers will identify other applications for this formula.

Appendix

Present Value of the Lost Pleasure of Life of Jack Doe 1989-2028 With a 1.29% Real Growth Rate and a 3.13\% Real Discount Rate

Year	Age	Value of Life	Discount Factor	Present Value	Cumulate
1989	36	\$52,500	1.00000	\$52,500	\$52,500
1990	37	\$60,774	0.96965	\$58,930	\$111,430
1991	38	\$61,558	0.94022	\$57,878	\$169,308
1992	39	\$62,352	0.91169	\$56,846	\$226,154
1993	40	\$63,156	0.88402	\$55,831	\$281,985
1994	41	\$63,971	0.85719	\$54,835	\$336,820
1995	42	\$64,796	0.83117	\$53,856	\$390,676
1996	43	\$65,632	0.80594	\$52,895	\$443,571
1997	44	\$66,479	0.78148	\$51,952	\$495,523
1998	45	\$67,337	0.75777	\$51,026	\$546,549
1999	46	\$68,206	0.73477	\$50,116	\$596,665
2000	47	\$69,086	0.71247	\$49,222	\$645,887
2001	48	\$69,977	0.69084	\$48,343	\$694,230
2002	49	\$70,880	0.66988	\$47,481	\$741,711
2003	50	\$71,794	0.64955	\$46,634	\$788,345
2004	51	\$72,720	0.62983	\$45,801	\$834,146
2005	52	\$73,658	0.61072	\$44,984	\$879,130
2006	53	\$74,608	0.59218	\$44,181	\$923,311
2007	54	\$75,570	0.57421	\$43,393	\$966,704
2008	55	\$76,545	0.55678	\$42,619	\$1,009,323
2009	56	\$77,532	0.53988	\$41,858	\$1,051,181
2010	57	\$78,532	0.52350	\$41,112	\$1,092,293
2011	58	\$79,545	0.50761	\$40,378	\$1,132,671
2012	59	\$80,571	0.49220	\$39,657	\$1,172,328
2013	60	\$81,610	0.47727	\$38,950	\$1,211,278
2014	61	\$82,663	0.46278	\$38,255	\$1,249,533
2015	62	\$83,729	0.44874	\$37,573	\$1,287,106
2016	63	\$84,809	0.43512	\$36,902	\$1,324,008
2017	64	\$85,903	0.42191	\$36,243	\$1,360,251
2018	65	\$87,011	0.40911	\$35,597	\$1,395,848
2019	66	\$88,133	0.39669	\$34,961	\$1,430,809
2020	67	\$89,270	0.38465	\$34,338	\$1,465,147
2021	68	\$90,422	0.37298	\$33,726	\$1,498,873
2022	69	\$91,588	0.36166	\$33,124	\$1,531,997
2023	70	\$92,769	0.35068	\$32,532	\$1,564,529
2024	71	\$93,966	0.34004	\$31,952	\$1,596,481
2025	72	\$95,178	0.32972	\$31,382	\$1,627,863
2026	73	\$96,406	0.31971	\$30,822	\$1,658,685
2027	74	\$97,650	0.31001	\$30,272	\$1,688,957
2028	75	\$68,831	0.30342	\$20,885	\$1,709,842

[^3]
[^0]: ${ }^{*}$ Respectively Unıversıty of West Vırgınia System, West Virgınıa Graduate College, Charleston, WV, and Department of Economics, University of Missourn at St. Louis, St Louns, MO The authors wish to express their appreciation to Drs Stephen Horner, Michael Piette, and Frank Slesnick for helpful comments on an earlier draft of this article.
 $1_{\text {A different result is produced by specifying equation 1) for payments at other than the begin- }}$ ning of the period.
 ${ }^{2}$ While this algebract expression for the net discount rate has been widely used in the literature of forensic economics, it should be noted for the newcomer that the net discount rate is the wage growth rate less the interest (discount) rate. Whether or not the inflation rate is considered does affect the estimate See the technical appendix to Chapter 3 of Michael L.

[^1]: ${ }^{*}$ It should be noted that spreadsheets are also available which, in lieu of the formula discussed in this article, allow the calculation of the initial, annual value. Key inputs are the net discount rate and the cumulative present value at the end of the period.

[^2]: ${ }^{3}$ Ibid, Chapter 9.

[^3]: Source: Michael L. Brookshıre and Stan V. Smith. Economic / Hedonic Damages:: The Practice Book for Plaintıff and Defense Attorneys, Cincinnati: Anderson Publishing Company, 1990, 170-172. Reproduced with permission.

