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CHAPTER 1

INTRODUCTION

The remarkable experimental success of the gauge theory of gquantum
electrodynamics (QED) led in the 60's and early 70's to the idea of
extending the gauge symmetry principle [1] to the deacription of other
known interactions. A gauge theory (see [2] for a review) is
consatructed by requiring the Lagrangian to be locally invariant under a
group of internal (gauge) symmetries (i.e, symmetries that do not
involve the space-time coordinates). This naturally leads to the
introduction of vector flelds (gauge bosons) in a number equal tc the
number of generators of the symmetry group. The structure of thelir
self~-couplings (if the group is non-abelian) as well as that of their
couplings to matter are then completely determined, by the gauge
symmetry, in terms of the gauge couplings. In QED for instance, the
Lagranglan is i{nvariant under a set of local U(1) transformations whose
generator, Q, is the electric charge operator. Thus, only one vector
fleld is introduced that corresaponds to the electromagnetic potential "‘u
and the corresponding vector boson is the photon. The quantum fleld
theory of the strong interactions, quantum chromodynamics (QCD), is a
Eauge theory based on the group SU(3) (it is experimentally required
that there be three "color" degrees of freedom [3]). This group has
eight generators, therefore eight vector bosons (called gluons) must be
introduced.

In the Glashow-Weinberg-Salam (GWS) theory [4), the weak and

electromagnetic interacticns are described by a lcocal gauge theory based



on the group SU(2) x U(1). The group has four generators ”1“’ -1, 2,
3) for SU(2) and Y for U(1)), thus four vector bosons must be
introduced: the photon and the recently detected [5] charged vector
bosons W® and neutral vector boson Z. If the gauge symmetry were an
exact symmetry of the vacuum, all four vector bosons would be massless,
as a mass term for them in the Lagrangian violates the gauge symmetry.
However, due to the short range nature of the weak interactions, the Wi
and Z must be very heavy, thus the symmetry must be broken. A gauge
symmetry can be spontanecusly broken by elementary scalar filelds
introduced in the Lagrangian which acquire non-zero expectation values
in the vacuum state. With this mechanism [6] the Lagrangian remains
invariant under the gauge symmetry, whereas the ground state does not;
the result of this is the generation of masses for some of the vector
bosons (those that do not correspond to the generators of the symmetries
that are left unbroken) accompanied by one or more massive physical
scalars (the short range nature of the strong interactions cannot be
explained by spontaneous symmetry breaking [7]. Instead, (t is
postulated in QCD that the gluons are massless and that the long
distance, non-perturbative behavior of the theory is responsible for the
limited range of the strong interactions [7]). The standard analogy is
ferromagnetism, where the Hamiltonian has rotational invariance, but the
ground state (below the critical temperature) does not.

In the GWS model, the SU(2) x U(1) symmetry is spontaneously broken
down to the U(1), , theory of electromagnetism, and the W% and the 2
acquire mass. Fermions are included in the model as left-handed SU(2)

doublets and (with the possible exception of the neutrinos) right-handed



singlets. As a mass term for them in the Lagrangian violates the gauge
symmetry, they acquire masses through thelir Yukawa couplings to the
elementary scalars. These masses, as well as that of the scalars, are
arbitrary except for limits to be discussed In this thesis,

The limits to be discussed come primarily frem cosmologlical
constraints on the SU(2) x U(1) = U(1), , phase transition. Over the
past decade, we have seen remarkable connectlions emerge between
cosmology and astrophysics on the one hand and particle physlies and
quantum fleld theory (QFT) on the other. The combined CWS and QCD
theories are the standard model of the strong, weak and electromagnetic
interactions. The gauge group is SU(3) x SU(2) x U(1), which breaks
down to the low energy SU(3) x U(1), , at scales of order 100 GeV. All
three interactions, however, can be unified into a gauge theory based on
a simple group, with one coupling, which breaks down to SU(3) x SU(2) x
U(1) at scales of order 10'* GeV. These so-called grand unified
theories (GUT's) predict baryon number violating processes that can, in
prineiple, explain the cbserved baryon number to entropy ratio. These
theories have dramatic consequences for the evolution of the universe as
well; phase transitions occurring at temperatures of the order of the
scale of the breakdown lead to a perlod of exponentlal expansion of the
universe (the so-called inflationary universe [8]) which solves two
major cosmologlcal puzzles, the horizon and flatness problems (see
Section 2.4), and might be able to explain the origin of galaxies. In
turn, standard cosmology provides many constraints on particle physics
models. For instance the sum of the masses, m, o of 1ight, stable

neutrinos has an upper bound [9], T m, < 40 eV, obtained from the



experimental upper limit on the density of the universe. Also, the
requirement that the axion energy density be less than the upper limit
on the density of the universe and that they do not carry too much
energy away from red giants implies 10" < m,/eV < 107" (the axion [10]
is a light pseudoscalar associated with the spontaneous breakdown of a
symmetry that Peccel and Quinn [11] postulated as the explanation of the
absence of CP violation in QCD).

In this thesis we present a detalled discussion of the exlsting
bounds cn the cotherwise arbitrary masses of acalars and fermions in the
GWS model. Aa it turns out, these constraints come primarily from
coamology and the self-consistency of perturbative grand unification.
In Section 11 we present a brief review of gauge theories (2.1) and
spontaneous symmetry breaking (2.2). We then present the EI!IS model
(2.3) and discuss GUT's briefly (2.4). In Section IIIl we review the QFT
tools needed to discuss the GWS phase transition in various cases. The
effective potential is introduced in 3.1 to discuss asymmetry breaking
when radiative effects become important. Finite temperature fleld
theory 18 introduced in Section 3.2 to discuss the GWS transition at
finite temperature. As it turns out, metastable phases can occur and it
becomes necessary to discuss their decay to energetlcally favored
phases. The decay of false vacua is discussed in 3.3. In Section IV we
review the renormalization group equation (RGE) for the effective
potential, which allows one to determine the effective potentlal over a
wide range of scales. Finally, in Sections V and VI we discuss In
detail the theoretical and experimental bounds on scalar and fermion



CHAPTER 11

QUANTUM FIELD THEORIES OF ELEMENTARY PARTICLES

2.1 Gauge Theorliea

Symmetry principles have long been an essential ingredient of the
physical description of nature as well as a powerful constraint on the
mathematical theories that are used to describe it. In 1905 Einatein
identified the group of symmetries of space and time under which
physical laws must be invariant. This is a glecbal symmetry, for which
the symmetry transformations are the same for all points in space-time.
A more powerful kind of symmetry is &2 local symmetry in which one
requires invarlance under transaformations that vary from point to point
in space-time. Local space-time invariance led to Einstein's Ceneral
Relativity.

Local Invariance under a group of internal symmetries (i.e.
symmetries that do not refer to space and time) leads to gauge theorles.
A local gauge theory is defined by requiring that the Lagranglian be

invarliant under the local set of transformatlons (see [2] for a review)

o(x) » exp(-il « B(x)) ¢(x) = U(B)o(x) (2.1)

where ¢ Is a column vector that represents all the matter [lelds
(fermion and boson). L - B(x) = [ 8.(x)L,, where N is the number of
generators, L,, of the gauge group G (which is equal to the dimension of
G) and the By's specify an arbitrary element of G at an arbitrary space-

time point x (with the restriction that they be non-singular functions



of x). The existence of this local symmetry impllies the existence of
vector {or gauge) bosons, one for each generator of the symmetry group,
whose self-interactiona, as well as their interactions with matter
flelds, are completely determined by the gauge invariance. To see this

we note that under a gauge tranaformation
iui + U{iui} + (EHU}i (2.2)
i.e. iut does not transform covariantly, therefore a kinetic energy term

in the Lagranglian would not be invariant. If we require a derivative

term to be covariant

D¢+ umun (2.3)

then we are forced to introduce N vector bosons llf(i-l....,lﬂ s0 as to

cancel the extra term above. Thus one defines

B, =@, = 1glu - £ (2.4)

Demanding D to transform covariantly as in (2.3) implies
1
& - & -1 2
Iu L qu Cu 1/g(3 WU (2.5)

The gauge Invariant kinetic energy terms for fermions and complex

Acalar flelds are then



Lygn = Uiy + (0, 0)'DYe (2.6)

We see Lhat the gauge invariance determines the form of the couplings
between the gauge flelds and the matter flelda. However, for the l: not

to be just auxilliary fields, we must add a gauge invariant kinetic

energy term

Lin = = Kr ¥V (2.7)

where F__ = f"u- L = aulu L - a“Iu L - lﬂ[xu - L.k, + L). This
last term in Fuv is very important; it implies the existence of self-
interactions between the gauge fields {f L x £ = 0. In the abelian case
(E x L = 0) we see that the vector boson does not carry the charge it
couples to, whereas in the nonabelian case they do.

A mass term ‘A My A: A¥J for the gauge bosons {s not gauge
invarliant, thus it {5 not allowed. This we know is the case of QED (the
upper limit on the photon's mass (s 6 x lﬁ"' MeV), but the weak
interactions are short-ranged, thus we know that the gauge bosons of the
theory cannot be massless (in QCD the gauge bosons are massless, but
color confinement (presumably due tec the increase in the color charge at
large momenta) gives a short range interaction. The possibility of the
weak interactions being strong has been discussed in the literature by
Abbott and Farhi [12]). Therefore the symmetry must be broken.

This brings us to the idea of spontaneous symmetry breaking (ssb)

‘to which we now turn for & quick review.



2.2 Spontaneous Symmetry Breaking

The oldeat idea of symmetry breaking is that of "approximate"
symmetries. One supposes that there are terms in the Lagrangian that
viclate the symmetry but that they are, in some sense, "small".
However, breakage of gauge Invarlance in the equationa of motion
completely spoils the renormalizability of the theory and one could not
make sense out of the theory beyond the tree-level approximation
{(another possibllity is anomalous symmetry breaking, but here again if
the gauge current has an ancmaly one cannot consistently builld a
quantized renormalizable gauge theory.)

However, it is possible that the symmetries of the equations of
motion are not respected by thelr stable sclutlons. The lowest energy
stable solution, the vacuum, may thus be invariant under a smaller
subgroup H of the group G of symmetries of the Lagrangian. Then one
says that G is spontaneocusly broken down to H. A simple example {s a
ferromagnet: the equations of motion are rotationally invariant, yet
the spins In a real ferrcmagnet are aligned in a definite direction. In
general, iIf the vacuum of a gauge fleld theory has a non-zero
distribution of the charge asscclated with a given generator, then the
assoclated gauge boson will constantly interact with this charge and
will develop an effective mass proporticnal to the expectation value of
the charge.

A simple mechanism to implement ssb is the Higgs mechanism [6].
One introduces spin-zero fields into the theory which tranaform in a

. non-trivial way under the gauge symmetry. If the vacuum expectation



10

value (vev) of one of these fields {s non-zero, then all of the gauge
bosons for which that field has non-zero charge will be massive, To see
how this takes place, consider a simple U(1) gauge theory with a self-

interacting scalar fleld

. : .1 T
L ]Du¢| ¥ Tt U(e) (2.8)

where U(¢) 1a the most general, renormalizable potential
Ule) = u%e? + 20" ; ¢ = |o|® (2.9
Therefore, L is invariant under

6 .—utx}‘

(2.10)

A -"'H- 8

1
M T

If y* < 0, the minimum of the potential is at |¢|? = -u?/2), thus
the field ¢ has a non-zero vev v® = |<¢>|? = =u?/2A. As written, 1is not
suitable to do perturbation theory since we would be trying to calculate
quantum fluctuations around an unstable solution. To do perturbation

theory about the stable solution we translate the fleld as follows

¢(x) = /%- (e + nix) + 1x(x)) (2.11)

where ¢? = -y?/)., This gives

+# [interaction terms) {2.12)
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L and L' are of course completely equivalent If we can solve the
problem exactly; however we cannot do so and while L gives perturbative
nonsense (negative squared mass), L' gives a reasonable spectrum,
Should we have only global U(1) invariance i.e. L+L = 3 43" -
Ul¢), then L* + Ly = 'A{3 n)® - "h(2X0?)n* + ‘fa{au:}' + interaction
terms, and the system consists of two interacting scalars with masses m?

n
= 2)c? and m? « 0 (it is the spectrum we would have found starting from

1

L, if we could have solved the dynamics exactly). The massless scalar is
a Coldstone boson and its presence {s quite general: if a field theory
has a symmetry of the Lagranglan which is not a symmetry of the vacuum,
then Goldstone's theorem [13] assures that there will be at least one
massless boson. The number of these bosons is the number of generators
of the symmetry group of the Lagrangian minus the number of generators
of the symmetry group of the vacuum. However, this ls not true for
local gauge symmetries.

Note that L' seems to describe a massive vector boson and two
scalars, thus a total of [ive degrees of freedom, while the original has
only four (two scalars and a maasless vector boson). Since a simple
change of variables cannot create new degrees of freedom, L' must
contalin flelds which do not correspond to physleal particles., To

exhibit this we go back te L (in 2.8) and do the following

transformation

o(x) = _,-% (o + ni{x)) expliy(x)/c)

X (2.13)
hu(:} - Bu{x] - g a“ xlix)
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we now get

. |
L" - --:Taw: . l?’-l Bl + ;—(aun}' -JE (220%)n? (2.14)

. %-n‘ + g'B;[Eon + n?)

x(x) i3 gone! We have used the gauge degree of freedom to gauge y(x)
away, therefore L" i3 not Invariant under gauge transformations. Thus,
the theory consists of a masalve gauge boson and & massive scalar, four
degrees of freedom as we started with. As (2.13) suggests, the y fleld
becomes the longitudinal component of the massive vector field B,. This
method of acquiring mass due to sab is called the Higgs mechanism,

To Summarize:
a) L is invariant under the usual gauge transformations, but it
contains a negative squared mass and, therefore, it is unsuitable fer
quantization (since one wants to do perturbation type things).
b) L' is still gauge invariant, but the transformation laws are more
complicated. It can be quantized Iin a space containing unphysical
degrees of freedom (L', in a suitable gauge, is used for general proofs
of renormalizability as well as practical calculatiocns).
¢) L™ is no longer Invariant under any kind of transformations, but it
exhibits clearly the particle spectrum of the theory. |" can be
obtained from [' by specifying the gauge of the latter (L" i3 not
renormalizable by pover counting, but since {t is gauge equivalent to
L', it can be used for practical calculations).

We now turn to the conatruction of the GWS model.
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2.3 The GWS Model

The GWS model [4] is & unified description of the electromagnetic
and weak interactions i{n terms of a gauge theory based on two internal
symmetries of the Lagrangian: weak isospin and weak hypercharge,
described by the groups SU(2) and U(1) respectively. Ssb takes place
via the Higgs mechanism in such a way that the only symmetry of the
vacuum is electromagnetic gauge invariance, The weak interactions are
then identified as the interactions mediated by the massive vector
bosons associated with the broken generators.

The group SU(2) has three generators Ty, 1 = 1,2,3 and therefore
there are three associated gauge bosons Ai: the coupling constant is g,
T, Bu and g' are the generator, gauge Tield and coupling of U[1)
respectively. The couplings g and g' are independent thus, in that
respect, the model i3 not truly a unified model of the electromagnetic
and weak interactions. Fermions are put into left-handed SU(2) doublets
and right-handed SU(2) singlets, For instance the u and d quarks split

ag

u
“l ug. g (2.15)

gy,

where gL = {1 2 ?5}u, and the eleetron and electron neutrino are

grouped as

(vg)
A P (2.16)
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{“R is absent since it is not observed; note that one can equally
formulate the theory in terms of left-handed fields (v, ,e ) and e]).
The group {u.d.e'.ue} forms the first family, with two other families
known: (e,s,u,v,) and (t,b,7,v.). Also, since left- and rignt-handed
fermions are assigned to different representations, parity viclation is
automatically bufilt into the model., The hypercharge assignments are
chosen so that @ = T?- + ¥/2 1s the electric charge operator. Since the
theory is chiral (i.e. left- and right-handed fields couple differently,
thus there will be gauge couplings proporticnal to 15 and, therefore,
there will be anomalies), one has to make sure that the anomalles of
gauge currents vanish, leading to the prediction that there be a guark
for each observed lepton.

In the minimal model one introduces a ¥ = +1, SU(2) doublet of
Higgs scalars ¢ (extensions of the Higgs sector will be discussed in

Section 5.2), for which the most general renormalizable potential is

Ute) = -u*(ete) + a(ete)? (2.17)

One chooses u* > 0, sc that the potentlal be minimized at <¢T¢> - u3s2).
Thus, the vacuum will contaln a non-zero expectation value <¢>, of the
Higgs scalar (ssb takes place even for amall, negative u?, If i is
sufficlently small, due to radiative corrections. This will be

discussed in Section 1.1)., Since the potential depends only on of

¢, the
orientation of <#> 1s not determined, By convention one chooses <¢> =

0,0/¥2); any other orientation can be brought to the conventional one by
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an appropriate global SU(2) transformation.

Since T;<¢> = (1;/2)<¢> ¢ 0 (1y are the Paull matrices), ¥<&> = <
# 0 and Q<#> = {T3 + ¥/2)<¢> = 0, the symmetries assoclated with the
generators T,, T, and Ty - Y are spontaneously broken., However, the
sSubgroup generated by Q = T3 + ¥/2 is unbroken and it is to be
identified with the U(1), ., gauge group of electromagnetism.
Therefore, by choosing p?* > 0, SU(2) x U(1) breaks down to U(1) leaving
one massless gauge boson (the photon) and three massive vector bosons
(that SU(2) x U(1) breaks down to U(1), , for the entire perturbative
domain of the scalar Interaction is not the case in models with more
Higgs scalars. 5See Section 5.2).

To work out the particle spectrum of the theory we just have to
find the effecta of <%> on the various couplinga. First note that a
mass term for the fermions is not gauge invariant and it is thus
forbidden. However, their SU(2) x U{1) invarlant Yukawa couplings to ¢
will give them masses due to <¢>. For instance, the most general Yukawa

interaction of a group of leptons is

Ly = -gyLeR + n.c.

L=( "), and R =i (2.18)
As we did in the previous sectlion, we write ¢ = up[i-rizil‘.x}fz:ﬂm.{u +
n)/¥2), where ¢?/2 = <#%8>. An appropriate SU(2) gauge transformation,

¢ =+ explitgalix)/2)e with a*(x) = gi(x)/o, gets rid of the fields g, (x),

giving mass to three of the four vector bosonsa. The Yukawa term will



16

then be

Ly = -y Lt )R + h.e. = ~—E(0 + n)L (2.19)
(o+n)/VZ VZ

glving mass to the leptons (the neutrinos remain massless). Thus n has
scalar couplings (ne 15'51 and By = V2 Ill.fu: my is arbitrary except for

upper limits to be discussed in Section 6.1. The scalar Lagrangian

e sk s falale:
lg = |30 -5 8'B,¢ - 5 g1 A ¢ u(e) (2.20)

becomes

T amt e G2 0,0, - atad ()

+ J.‘,'-' (o + n)? - -,’-:- (o + n)* (2.21)

thus, the scalar n has mass mj « 2yu*; it is arbitrary except for limits

to be discussed in Chapter V. Defining the flelds

“BA} * 8'B, g8, + 8'A
Lo — A e
- e
1
and w: = — (A} 2 1A%) (2.22)
vz

one gets M, = go/2, M, = VEY + &' *(a/2) and My = 0 from (2.21). Thus,

A is the photon and from its coupling to the electron one gets that e =



17

EE'/YET * B'¢ is the positron's charge. The W and the Z are the charged
and neytral vector bosons responsible for the weak interactions and have
been detected recently by experiments at CERN [5). By comparing the
theoretical value for the muon decay rate, as calculated In the GWS
model, to the experimental result, one gets o¢® = {v’fﬁpi-' = {287 GeV)Z®,

Conventionally, the weak mixing angle is defined by g'/g = tang,,
thus gsing, = g'coss, = e. Using the known experimental value of o one
can show that (including radiative corrections [4]) M = 38.5
CeV/sine (M) and M, is obtained from M, = M_/cos8 (M) (p = M_ /M cose
= 1 at the tree level Iin the GWS model. See Section 5.2). The
extension of the model to hadrons (see ref. [15]) provides a natural
explanation for the suppression of strangeness changing neutral
currents. A six gquark version of the model provides a natural mechanism
for CP violation [16). The renormalizability of the model was proven in
ref. [17].

Several features of the CWS model have been confirmed
experimentally. A large number of different experiments give very close

values of sinsg the world average being sin®8 (M) = 0.215 % 0.012

w*
[14]). The experiments recently done at CERN [5] confirmed the existence
of the W and the Z with masses M_ = B1 2 2 CeV and M, = 93 £ 2 GeV, in
good agreement with the theoretical values [14] M, = 83.0 ¢+ 2.4 GeV and
M, = 93.8 2 2.0 GeV (the uncertainties are due to the uncertainties in
sing,).

This concludes our review of the GWS model. The standard model

(SM) of the strong, weak and electromagnetic interactions is just the

combination of the GWS model with QCD. The gauge group 13 the direct
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product G, = SU(3) x SU(2) x U(1) with couplings g,, & and g'
reapectively. There are several featuresof the SM that are not
understood, such as the absence of VRe the number of families, the value
of sin@,, the quantization of electric charge and the arbitrary masses
of fermions and scalars. Some of these can be understood in the context

of grand unified theories, to which we now turn for a few comments.

2.8 QCrand Unified Theories

The {dea of grand unified theories (GUTS; see [18] for a thorough
review) is to embed the gauge group of the SM in a simple gauge group Gy
with just cne coupling constant g;. At energles -q*- M (where q® is
some typical momentum transfer squared) we already mentioned that the
strong, weak and electromagnetic interactions are described by a SU(3) x
SU(2) x u(1) symmetry with very disparate couplings;these couplings are
scale dependent, however, and one finds [19] that they do come together
at -q* ~ M3 - (10'* GeV)? with ag(M,) = a,(M,) = a'(M,) = oy ~ 1740 (ay
= gfﬂu}. The evolution of the couplings is depicted in Fig. (21).

Thus, O, breaks down to SU(3) x SU{2) x U(1) at -q? - H; and this
in turn, breaks down to SU(3) x U(1), o at -q*- M. Another reason to
expect the GUT symmetry tc break at a very large scale is the stabillity
of the proton. In GUTS, the electric charge operator, Q, i{s a generator
of the group, and in most GUTS this meana that Q is tracelesa. Thus, It
is not possible to put the quarks alcne into a fermion representation of
the GUT aince the sum of the quark charges is not zero in a given
family. Instead, some antiquarks or leptons must be Iln the same

. representation as some of the quarks. This means that some of the gauge
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vector bosons of GUTS must mediate transitions from gquarks to antiquarks
or leptons (theae are sometimes called leptoquarks and are denoted by X
and Y in Gy = SU(5) [20]). This generally leads to barycn and lepton
number violating processes and, thus, to proton decay (there are models
[21] with stable protons however). A typical diagram is glven in Flg.
2.2. Treating the proton decay as a four-Fermi interaction in analogy
with muon decay [22], one gets a rough estimate T T H;Juﬁ n; (where e
is the proton mass). Since the current experimental lower limit on
proton decay 1s 1,(p e*r% >10"? years [23], M, > 10 '® GeV.

Another very important =ffect of the baryon number violating

reactions llies in the early unlverse at temperatures T - M All

xo
observations indicate the absence of antimatter in the universe [24].

Thus, the net baryon number density if non-zero and [25]

an 5
B baryon —
* Mparyon ~ Mantibaryon/Ty ~ ——— = 10°7° (2.23)
ﬁ-.r HT

Grand unified theories give baryon number vioclating reactions, as well
as C and CP asymmetries; when these reactions occur out of thermal
equilibrium (due to the expansion of the universe), it is possible for
them to generate a net baryon number which is at most nha"s - 107 (but

it is most typically n,/s - 10°"" [26]); 3 ia the entropy denaity here
and at the present s = 7.02 Ny. As will be discussed {n Chapter ¥, If
there are no other processes that can generate baryon number at the
electroweak scale (there are models [27] with baryon number violating
processes at scales 0(1 TeV)), one can set a lower limit on the Higgs

mass by requiring that the entropy produced in the SU(2)x U(1) =
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U(1)g p, Phase transition not dilute the baryon to entrcpy ratio beyond
the experimental limits.

Another consequence of having leptons and quarks in the same
representation is that there are mass relations among them, like Mp = m,
(this is at the CUT scale). When the appropriate Yukawa couplings are
scaled down to the low energy sector, one gets the very successful
prediction my - 3m (for the d and s quarks the masses cannot be
reliably calculated because QCD becomes strong.)

CUTS have had a profound impact upon cosmology also. The
possibility of phase transitions in the early universe led Guth [28] to
suggest a variant of the big bang cosmology, the sc-called inflationary
universe [8]. In this model, a period of sufficient exponential
expansion of the univerae solves two major cosmological puzzles, One is
the horizon problem: distant structures in the visible universe were
not in causal contact at very early times if the atandard blig bang
cosmology is correct, thus the observed homogeneity and lsotropy of the
entire visible part of the universe ls a mystery. The other 1a the
flatness problem: the denalty of the universe, p, is very close to the
eritical density p,, which separtes an open (p < p,) and a closed (p >
Pe) universe. However, p, {s an unstable fixed point in an expanding
universe and any deviation will grow in time. Thia, p has to be
initially fine-tuned to p, with an incredible precision to account for
the small deviation today. During a period of inflation, a small,
causally connected reglion expands exponentially to encompass the entire
visible universze and this reglion will be essentially flat, thus solving

both puzzles.
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CHAPTER 111

FIELD THEORY METHODS IN COSMOLOGY
3.1 The Effective Potential
Our discussion of the Higgs mechanism has been entirely classical
so0 far. However, if X is small quantum corrections to the classical
potential U(¢) become crucial. One can define a function called the

effective potential, ?itﬂ}. such that its minima give the true vacuum

states of the theory exactly, without any approximation. It can be
proved that this effective potential is the expectation value of the
energy density in a quantum state for which the expectation value of the
field ¢ 1is ¢, [24]. Therefore only the absclute minimum of V
corresponds to the true ground state of the theory: the vacuum.

Spontaneous symmetry breaking occurs 1l the quantum fleld ¢
develops a non-zerc expectation value in the vacuum. One can show that
this implies that dvfdtc =0 for b ¢$> = 0. Therefore one can study
ssb just as in classical field theory, but we replace U(¢) by V(e,).
Thus, the Higgs mechanism discussion goes through just as in the
classical field theory case.

Of course, one cannot calculate V(¢,) exactly; that would imply
sclving the quantum field theory exactly. A very useful approximation to
V, however, is the so-called loop expansion [30]: in the diagramatic
expansion for V(¢,) one sums (irst all diagrams with no loops in thenm
(tree grapha), then those with one loop in them, ete ... One can show
that this expansion in the number of loops is equivalent to an expanaion

in powers of h [31] with the result that V(¢,) = U(¢,) « 0(h), thus the
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tree-level potential is just the classical potential U(¢). The
usefulness of the loop expansion resides in the fact that it corresponds
to an expansion in a parameter that multiplies the total Lagrange
denaity and, thus, it is independent of shifts cof fields and of the
redefinitions of the division of free and interacting parts of the
Lagrangian that are assoclated with such shifts. This calculational
procedure, therefore, allows us to survey all the vacua at once at any
given level of approximation.

To illustrate the loop expansion we now calculate the scalar loop
contribution to V(e,) as a sample computation [32]. Consider a theory

def ined by

L=3(3,0)° ..% pret- et (3.1)

so that U(¢) = -u?¢*/2 + 1¢"/4. The loop expansion for V(¢,) is
depicted in Fig. 3.1. Each external leg carries a factor of $on Thus,
the first graph will have a factor t; because of the four external legs,
a factor 1/4 because of permutations of external legs and a lactor 3! a
for the quartic (self-interaction) term (we are considering the first
two terms in 3.1 to be the free Lagrangian). Thus, at the tree level

(zeroth order in the loop expansion)

V(8,) = Vo(0) = = u¥e? + T Ae" = Ulg,) (3.2)

Then nth one-loop graph has a factor .gn due to externzl legs, a factor

[(3] A)/2 1" for the n vertices (the 1/2 is due to permutations of

. internal lines in a vertex), a factor (k? + u®)™™ ror the n propagators
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and a combinatorial factor 1/2n. The result of summing all these graphs
is a logarithe and (rotating to Euclidean space and throwing away an

infinite, ¢

o - independent term)

1 L]

Vieg) = Uleg) + 5 | EXaintkr + M2(ey)) (3.3)
where H'Iicl = =p? s 31#5 is the squared mass in the shifted Lagrangian
(¢ = ¢ - ‘c}' Integrating over k, (discarding an infinite piece which

does not depend on M?(¢,)) we get

Vie,) = Ule,) + {%;7. Jd'i /KT + H’fﬁé’ (3.4)

Thua, the one-loop effective potential is the sum of the classical
potential and the zero-point oscillations of ¢,- Finally, defining the

renormalized u? and i as

X d*v
yﬁ E - H | $ EIHEF" | (3.5)
™ e ooettp

we can do the integral and get

M*(0,)  M(e,)
Viea) = Uley) + 1n (3.6)
flux? Mi

where p? and A in Uh,_.] are the renormalized quantities and My is the
renormalization mass used to define A; it is arbitrary and different

‘Hn'a refer to different i's,
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In the GWS model one geis a similar result for vector and fermion
loops but H’ffnl is now the vector (fermion) squared mass in the shifted
Lagrangian M (¢,) = ge5/% and Mj(e,) = (g* + g'*les/4 (for a fermion Mf
(¢o) = 8Ff¢2/2, where gp is the Yukawa coupling to the Higgs scalar).

Therefore’

2
V(8) = = ue? +f Ae* + Bo® in (3.7)

where ¢ is the classical (not the guantum) field and ¢ = 2¢'¢ (¢ is the

Y = 1 isodoublet of scalars. See Section 2.3). Here

GUniBe® = 6M) o Mz + Mt - 12 ] Mz -u4 ] Mj (3.8)
quarks leptons
and the couplings are evaluated at the renormallzation point Mg.
Minimizing V(¢), we can write the effective potential in terms of its

minimum? o = 2<¢Te>:

2 2
Vie) = -% ple? *% {ﬁah" + B¢*(1ln -31 - % ) (3.9)

The first surprise we encounter is that aa y? = 0, ssb remains in
the theory (this possibility was first realized by Coleman and Welnberg
[32]). The effective potential of (3.9) is depicted in Fig. 3.2 for
various values of y? < 0; we see that there s an asymmetric minimum of
V even for negative py?. The Higgs mass |s calculable in the y* = 0

limit and (if there are no heavy fermions)
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2 ﬂlv 2 ]
B - 'u'i’l e=g” 080" = mcy = (10.4 GeV) (3.10)
This mass will turn out to be crucial in the diascussion of lower limits

to the Higgs maas.

3.2 Finite Temperature Field Theory

At very early times the universe was very hot If we assume the
standard hot big bang cosmology and, therefore, finite temperature
affects are very important. Finite temperature field theory has been
extensively discussed in the literature [33]. To take into account the
heat bath at temperature B 1/T, one replaces vacuum averages by

thermal averagea
<0y = Trie ®H 0)/1r(e"BH) (3.11)

where H i{s the Hamllitonian and 0 is any operator. One can show that the
finite temperature flield theory in Euclidean space-time Is ldentical to
the T = 0 theory but will all Green's functions periodic in Euclidean
time with period 8.3

The Feynman rules are thus unchanged and s¢ are the propagators,

but the boundary conditions imply that L iz now discrete, k. = 2mT (n

O
= 0, +1, #2,...). Therefore, one substitutes fd*x = [d1/d’¥ and Jd*k =
L 2¢ nT/d’K. We can now find the effect of finite T in our calculation
of the effective potential by going back to equation (3.3) and redoing

the integrals with the appropriate replacements, One then rinds that
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V(¢.T) = V(g) + Vylo,T) (3.12)

where Vi¢) is the zero-temperature effective potential and

-
Vole,T) = ('z_zf" I dx x* 1n(1-exp-vxT + WE(I/TF) (3.13)

l.e. V;(¢,T) s just the free energy of a noninteracting Bose gas [34].
It should be noted that v.ru,'r} is Ffinite without any need of
renormalization, thus the couplings that enter Vi (¢,T) are the

renormalized couplings. Adding the contributions from all particles one

gets.

Ve, T) = 2 :: .l ny I:' dx In(1 ¥ exp - (x* + Hf{Q}JT‘}bi {3.14)

where ny; is the number of spin degrees of freedom of the particle i, M
is its mass in the background field ¢ and the upper (lower) aign refers
to bosons (fermions).

To understand the qualitative effect of the added thermal free

energy, one can expand V. for M?(¢)/T* << 1. One then gets

w35 wrt o5 T acnitee (3.15)
7 i g‘u‘ n ﬁ ﬂ-i i " anE 3-

where n = [ ng *+ 7/8 T e The second term 18 usually positive
[35] and wlll thus ralse the free energy of any asymmetric state
relative to the ¢ = 0 state and, therefore, at high enough temperature
the asymmetry 1s restored since ¢ = 0 is the only minimum of the

effective potential. If V, (¢) has an asymmetric minimum at ¢ = o (V,(0)
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> V,(0)), then this minimum will first appear at a nearby point ¢ < o at
a temperature T = Té 2 Tc' where Tn - p is the temperature at which the
asymmetric and symmetric statea become degenerate (see Fig. 3.3).
Howevar, at this temperature there {3 a barrier between the two minima
and the symmetric vacuum becomes metastable for T < T,. Thermal and
quantum fluctuations will then tend to force the false vacuum to decay
into the true asymmetric ground state. Since the universe s expanding,
it becomes crucial to calculate the decay rate per unlt volume, f, to
determine the temperature at which the transition is completed. Of
course, if d‘vufdt‘[¢-nl < 0 than the symmetric vacuum becomes unstable
(i.e. the barrier between the vacua disappears) at T! = T; -, L.
d’?ufdt‘{¢-ﬂl and the transition must be completed at a near
temperature, but if dV,/d¢*(¢=0) is very nearly zero or positive, the
universe can supercool enormously before f becomes significant to

overcome the expansion of the unlverse.

3.3 Decay of the False Vacuum

As we found in Sectiona 3.1 and 3.2, the effective potential can
sometimes have more than one minimum at T = 0 or may do s0 at high
enough temperatures. Although classically both minima are stable
configurationa, quantum tunneling or thermal fluctuations render stable
only the absoclute minimum of the potential, the true vacuum.

At zero temperature, the decay of the false vacuum [36] proceeds
via quantum tunneling which causes the nucleation of bubbles of true
vacuum. After being created, the bubblea expand in the false vacuum at

a speed that very rapidly approaches that of light, thus converting
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metastable phase into stable phase. As shown in [36], the decay rate

per unit volume (in the semiclassical approximation) is

f ~Aexp=-B (3.16)

where A = Yo" and Y i{s presumed to be 0(1). B is the Euclidean action
of the least action solution (the so-called "bounce™; it can be proved
that the least action soluticon must be 0(4) - symmetric [3T]) to the

equation

2
g—pg-%g%--:-:—;p-t-: (3.17)

subject to the boundary conditions

ﬂ‘ I
«0 ; ¢ <0 (3.18)
%® o p s
The first condition enaures the finiteness of the action (after
tunneling the field has zero kinetic energy) and the second that far
from the aite of nucleation the universe remain in the false vacuum.

Here V(¢) 1s the effective potential and the action i{s given by

B = 297 ]p' .:,{g:g,;.p . Vo)) (3.19)

At finite temperature [38] the solution to (3.17) can be required
to be 0(3)-symmetric only since the solution must be perliodiec in

Euclidean time with period 7' and the full temperature-dependent
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effective potential should be used in (317) and (3.19) (since the decay

rate is given by the lmaginary part of the free energy at finite

temperature). At high temperatures the action is of the form B «

E(T)/T, where E(T) is the free energy of a bubble of critical size at

temperature T. At very low temperatures on the other hand, quantum

tunneling dominates and B = B(T«0). One then finds [38] that unleas the
barrier disappears, B(T) will reach a minimum (correspondingly, the

tunneling rate a maximum) at a temperature T" and that if the transition

is not completed by then it will be completed only at exceedingly small

temperatures.

To determine the temperature Ti at which the transition is
cozpleted, one calculates the fraction of space remaining in the
metastable phase as a function of temperature and Ty i{s then the
temperature at which this fraction becomes negligible. This fraction,

as a function of time, is given by [38)
pit) = exp - l dat' rt')R*(t')v(e',t) (3.20)
where V(t',t) = Wg[/ drm H‘l{t'}]‘fa is the coordinate volume at time t

of a bubble formed at L' and R ia the scale factor of the universe. As

the universe coocls down in the symmetric phase RT = constant. From

Einstein's equations then®

(R/R)? = tausn;}p (3.21)

we get
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(/T) = =yg(T) (3.22)

where M_ - 1.2 x 10'" GeV is the Planck mass, p i3 the energy density of

P
the symmetric phase

2
p=pg* n nT* = p, g*(T) (3.23)

Po 1s the symmetric vacuum's energy density and y = thpDHHE]l’.

Therefore [38])

Tc ."B{T'] T dar"
p(T) =exp - b I—-— a7’ [|— —1 (3.24)
T g(T*)T** T g(T")

where b = 4wYg"/3y" = exp(170).
For T < T, g(T) = 1 and B(T) reaches aminimum at T = T#, thus the
main contributions to p(T) in (3.24) will come from T = T* and T= 0.

Approximately the integral by the sum of these contributions gives (for

T < T#®)
TR=T T T
p(T) 2 exp - b(eB(T*) (——)2 = , oB(T=0)y, 2, (3.25)
T" T T

We see that if B(T") > Inb ~ 170, thermal fluctuations are never
sufficient and It is quantum tunneling what drives the phase transition,
but since this effect increases only logarithmically with T, the

transition will be completed at exceedingly small temperatures. On the
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other hand, i{f B(T*) < 1n b, then p(T) becomes negligible as soon as T
drops below T*, and therefore Ty = T*,

The entropy density right befcre the transition is

hg?
Sy = -dv(0,T)/dT(T = Ti] " 50 an; (3.26)
where ny is the number of massless boson degrees of freedom plus 7/8 of
the number of massless fermion degrees of freedom in the symmetric

phase. Similarly, the entropy density right after the transition is

Sp = Ux* n,T2/90 (3.27)

where e is as ny but for the particles with masses < Tr. Therefore the

decay of the false vacuum increases the entropy density by a factor

Sg/Sy = {nffnlliTr!Ti}' (3.28)

Typleally (ng/ng) = 1. T, is found by requiring the energy density,
p(¢,T) = V(d,T) - TdV/dT, to be the same before and after the transition
(the universe reheats to T, due to the latent heat released in the
transition), thus ptn.rl} = ple,Te).

As will be discussed in Chapter V, requiring the ratio (3.28) not
to be too large in the SU(2) x U(1) =+ H{1}._.‘ transition, so that the
baryon to entropy ratio not be diluted beyond its currently known value
(ny/s ~10-''4} [25]), will be a powerful constraint on the Higgs mass

in the GWS model.
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CHAPTER IV

RENRORMALIZATION GROUP EQUATION FOR THE EFFECTIVE POTENTIAL
As we saw in Section 311, the explicit expresion for the effective
potential involves a renormalization scale Mg which is arbitrary; its
only purpose is to define the renormalized couplings through equations
like (3.5). Therefore, the full effective potential satisfies the

following RGE [32]

gyfull a

L . 9 , 3 full _
Mp EHR (Mg ma By T‘l u-ﬁ v 0 (4.1)

(we have used the chain rule here) which expresses the requirement that
the physics be invariant under changes in the rencrmalization mass HH'
Thus, a small change in Mg can always be compensated for by an
appropriate small change in the couplings and a small rescaling of the
flelds. Here Bi - HH dgideR and ¥ i{s the anomalous dimension of the
field ¢, Ya(MR/2)dZ/dMp (Z is the wave function renormalization factor)

To explere the implications of equation (4.1) we get rid of Mg
3/8Mg using dimensional analysis. Define t = ln ¢/Mp and consider, for

simplicity, just dimensionless couplings g;. Then we get

a 4y 1 2
S T-v o1 84 3= 0 (4.2)

As {5 well known,one can construct the general solutlon to (4.2) by

- finding the solutions to
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at 1=7(gy)

subject to the boundary conditions that 51:0.51] - gltiltt.:il is the
usual running coupling). Then, the general solution to (4.2) for a

purely quartic potential is

V= o' f(Eg(t,gg))exp 4 [ av - -
1=v(gg(t',g¢))
where f is an arbitrary function, Note that (4.4) is the exact sclution
for the full effective potential.The loop expanslion occurs when we use
the loop expansion for B and Y.

The usefulness of (4.3) is that it may allow us to approximate V
over a larger range of t. The usual loop expansion, as in equation
{3.7), requires both that t and the couplings be small. However, if the
solution to (4.3) remains small over a large range of t, then we can
trust the approximation over that entire range of t, thus givingus a
good approximation to V over a large range of t.

As a simple example of the usefulness of the RGE-improved potential

consider the case of 2 massless self-interacting scalar, so that
U(e) =Ae"/H (4.5)

The one-loop potential will be (see Section 3.1)
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' a

o . (3167)7

{HIE}

Defining ﬁln d*v/dé (¢ = HHJ and absorbing 1n3i in the definition of

the i coefficient of the quartic term in (4.5), we get

Vi) =2 '3""' [1n ﬁ% -2 (1.7)

It would thus seem that the minimum at the origin has been turned into a
maximum and that 2 ainimum has appeared at ¢ = ¢, ~ ”H exp 1/1.
However, at both points In¢/Mg >> 1 and the approximation cannot be
trusted.

At the one-loop level, 8; = 91%/8+! and Y = 0, therefore the

approximate equation for the running coupling Is

dl 932 B
® “HT Yt TImEe T8

Normalizing the solution of (W.4) so that V(Mg) = aMg/4, V() = X(t)e*/A.

Thus
Vig) = 2¢"/4(1 - Gat/8e?) (4.9)

This agrees with the one-loop potential in the reglion ) << 1, ]i.t[ << 1.
However, for large negatlive t, |Ilt.’l| << 1 and the approximation (4.9)
ean be trusted, Thus, the RCE-improved potential is a good
approximation near the origin and predicts a minimum rather than a
maximum. We cannot solve the problem of the minimum away from ¢ = 0

‘'since for large t 1 becomes large and we cannot trust the RGE-improved



35

. potential either.

We will use again the RCE-improved potential in Chapter VI to study
the CW potential (l.e. the potential in the p* -0 limit. See Section

(3.1)) when heavy fermions are present.
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CHAPTER V

BOUNDS ON HIGGS MASSES
5.1 The Minimal GWS Model
As discussed in Section 2.3, the minimal model contains one ¥ = 1

doublet ¢ of scalars for which the most general potential is
u(e) = -u*ete « a(ete)? (5.1)

and the mass of the physical scalar ismgj = 2u®. If the scalar's mass
is light (l.e. u®/o® << 1 or, equivalently, A << 1), quantum corrections
to the potential above are important and the effective potential becomes

{see Section 3.1)

1 3 3 1
Vig) = i uet "';'{-:'r Yot - Bl'tln%; o ) (5.2)

and the scalar's mass Is mj = d*V/de*(¢ = o) = 24" + n;;. where "CI:
8Bo? = (10.4 CeV)® 18 the Coleman-Weinberg mass: the scalar's mass in
the u* = 0 1imit. This potential is graphed in Fig. 3.2. We see that
even for negative u?® there can be ssb, but for u? < 0 there will be a
barrier between the symmetric and asymmetric minima. As discussed in
Section 3.2, at high temperatures the symmetry is restored and only the
symmetric vacuum exisats, As the temperature lowers, the asymmetric

vacuum forms and the transition from the aymmetric to the asymmetric

. vacuum must occur (since we live In the asymmetric vacuum today). The
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first lower limit on the Higgs mass was due to Linde and Weinberg [39]
who noted that if the asymmetric vacuum has a2 higher energy than the
asyometric vacuum at T = O, then the transition cannot occur. From Fig.
3.2 we see that this occurs for mj < 4 “c; and, therefore, my 2 uﬂﬂ?
- 7 GeV. However, one can rule out even higher masses because for mgy 2
oy 2 'C‘HHE a barrier between the two vacua remains at all temperatures
and the only way the transition can go is via tunneling. Linde [40]
found that the transition would be unacceptably slow (causing too much
inhomogeneities to be compatible with the homogeneity of the microwave
background) if @y < 0.99 mey. However, Guth and Weinberg [38] pointed
out that one should require that the transition not generate too much
entropy, since no process that can generate baryon number during or
after the transition is known and, thus, if too much entropy ia
generated in the transition it would wipe ocut the baryon to entropy
ratio, which is known to be ny/s, - 10-'!%! today (no mechanisam i{s known
that ¢an produce a baryon excess density of more than ‘Iﬂ" relative to
the entropy density, therefore an entropy increase ratio of about 10*="
is about as much as can be tolerated). To study the entropy production
in the transition one calculates the effective potential at T = 0 (see
Section 3.2), With this potential we can calculate the entropy increase
in the manner discussed in Section 3.3; the result is plotted in Fig.
5.1. The sensitivity of the entropy production to the Higgs mass is
easy to understand. For By 2 Doy (u? > 0) the symmetric vacuum becomes
unstable at T? = Té -~ = d*W(T = 0)/d¢*(¢ = 0) = pu? > 0 and the
transition must be completed at a near temperature, therefore Ty~ .

» The reheating temperature, Tf' i=sfairly insensitive to 'I‘1 and Tg =10
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CeV, thus Srfsl = (Te/Ty)* - (10 GeV/u)? < 10* if u > 0.1 GeV. We can
expect the entropy lncrease not to be excessive then, for Wy 2 .01 mcy-
However, as my approaches By {(u* » 0"] the symmetric vacuum can stay to
much lower temperatures and at My = Doy Guth and Welnberg found,
tunneling i3 the only way out of the symmetric phase and the nucleation
rate overcomes the expansion of the universe only at exceedingly low
temperatures, T, -1 keV. The situation for p* < 0 {s, of course, much
worse since in that case the barrier between the vacua never disappears,
This result would indicate, then, a lower limit on my, slightly greater
than may.

It was later pointed out by Witten [41] that very near CW (u? = 0)
chiral symmetry breaking (xsb) drives the tranaition much before gquantum
tunneling can play any significant role. The Lagranglan contains Yukawa
terms, V¢, which add a linear term to the potential when chiral
symmetry breaks down (i.e. <¥¥> b 0). This linear term erases the
barrier between the vacua and the transition occurs. Thus , the
transition temperature T, is near the critical temperature T, ( 200 -
800 MeV [42]) of the ysb transition. Therefore the entropy increase due
to the SU(2) x U{1) » (1), , transition (the ysb transition does not
produce a significant amount of entropy [43]) 1s Sg/5; - (Tg/T,)!
- 10*=*, The entropy production as a function of the Higgs mass
including the effects of ysb ils plotted as the full line in Fig. 5.1.
It thus seems that my = Moy is acceptable, but |t would require a very
efficient baryogenesis in the early universe. ]It was later noted in
ref, [44] however, that the presence of heavy fermions significantly

+alter the entropy production in the CW SU(2) x U(1) » u(1)g o
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transition. As was shown there (see Section 6.2), the presence of heavy
fermions creates a nearly-symmetric state (<¢> - 1 GeV) from which the
transition to our vacuum today (i.e. the vacuum with zero vacuum energy
density) would generate an excessive amount of entropy if the mass of,
say, the top quark m, 2 65 GeV, thus rulling out my = @ in that case,
We conclude that a lower limit on By of approximately m.y exists and
that my = mey is acceptable only for 2 limited range of fermion masses.

In contrast to the case of lower limita, which are
phenomenologically necessary, there are no phenomenclogical upper limits
on the Higgs mass, However, the Higgs self-coupling grows with energy
(unless there are very heavy fermions present (see Section 6.2)) until
it becomes significantly greater than one and perturbation theory breaks
down. This fact allows one to define a different type of "upper limit".
These limits are all based on the assumption that perturbation theory be
valid (either at the electroweak scale or up to the GUT scale); this is
of course desirable but at no point necessary (it was shown in ref, [45]
that a nonperturbative Higgs sector would have very little impact on
current phenomenology) and their viclation would imply new physics at
the scale of the breakdown. Once the Higgs becomes considerably massive
{IIH > "CH} my = 230", thus an upper limit on A becomes an upper limit
on my.

The first upper limit on my was discussed in ref. [46] where (t was
noted that the requirement that two body reactions of gauge bosons
respect partial wave unitarity places an upper limit of {E#'Z?BEF}“ - 1
TeV on my. If the Higgs mass is slightly below this value, however,

higher order corrections may be extremely important.
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The one-loop RGE for i is of the form (see Section 6.2).

u%-al’*hhl*c (5.3)

where a, b and ¢ are independent of ) (but may depend on the gauge and
Yukawa couplings). As discussed in [47] the solution to this equation
grows with energy until it diverges at some scale; if A(M) is large
encugh, this scale will be amaller than the GUT scale. It is not clear
whether one should require HH:} to be less than 1, 4w, ete..., but the
existence of a singularity clearly shows a breakdown of perturbaticn
theory. Thus, the upper limit becomes [47) my { 175 CeV if all fermion
masses are below 150 GeV.” A larger Higgs mass would rule out any
numerical predictions from grand uniflied theories.

There are no experimental constraints, as yet, on the mass of the
Higgs meson since its coupling to fermions is ﬂ{erE‘SD GeV)and,
therefore, so weak that Its experimental detection is extraordinarily
difficult. As discussed in ref. [i9] the best methods of detecting the
Higgs are decays of vector states of quarkenium (V = H + Y)land 2
brehmstralung. However, the branching ratios for the latter are ﬂlln"
- lD-'), thus one will have to walt until a Z factory is built at SLC

and/or LEP to use this detectlion method. The branching ratio for VvV = H

+ Y is
/2 G 2 X
—-—-—-i- ( -E-i IBIV » u*u7) (5.4)
e? lIIr

- -
The maximum branching ratio for accor Bbstatetogo toH + Y is-10
which might be detectable. Unfortunately, unless there are very heavy

fermions, the Higgs {3 heavier than the upailon (T) and , thus, ve must
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await for tt decays; here the branching ratios can be relatively large
(-<1%3), with & very good monochromatic-Y signature. There (s also the
possibility,for a Coleman-Weinberg Higgs, that it will be In the middle
of the T spectrum {(depending on the value of sln'BH}. in whlch case
there will be substantial mixing (see [50] for details). It thus
appears that the detection of the standard Higgs must awalt abundant
production of Z's and Bt's at least (if It is lighter than the Z or Et).

As pointed out by Veltman [51], for a Higgs of mass greater than
200 GeV it might be that the only way to detect It would be through
radiative correcticns. Unfortunately, the effects of heavy scalars only
vary as 1ln my, and so very high precision Is needed; again, a vector

boson factory might be the only way to detect it.

5.2 Two Higgs Models

So far we have only studled the Higgs sector in the simplest case
(the minimal model); however, this sector of the theory is
experimentally poorly known and, unfortunately, it has a lot of room for
thecretical arbitrariness. Experiments only constrain the sector weakly
and indirectly; for instance, the effective neutral current interactiona

due to Z boson exchange are described at low energy by

GF i
g = —pdJ3 Jpz (5.5)
vZ

where J , is the standard weak neutral current and p = My/MZ cos?e .
The current experimental value of p is 0.992 + 0.050 [52]. 1In the
standard model this parameter (at the tree level) is one, but if we

intreduce N Higgs multiplets #y that transform like representation Ry



42

under SU(2), then

L]
p = (I (ty(ty + 1) = (tD)Ne/2 (I, oflt])? (5.6)

where of = <#}¢,> and t} (ty(tg+1)) is the eigenvalue of T3(1%) in the
representation R,. We see that p is "naturally" (i.e. without
finetuning the vev's) equal to one if all multiplets transform like
doublets under SU(2). There is no restriction on the number of such
doublets, however.

In additlion to the standard Higga, other non-standard Higgs
scalars are experimentally allowed and they are theoretically welcomed
in a variety of contexts. In supersymmetric theorlies (see [53] for a
review), at least two doublets with opposite hypercharges are needed to
give masses to the charge 2/3 and -1/3 quarks. Additional doublets have
also been considered as a possible source of CP viclation in the K-
system [54] and, in a different context, as an explanation for the
absence of CP violation In QCD [11]. An additional triplet has also
been suggested as a way of giving masses to the neutrinos [55] without
altering the fermion content of the theory. In this section we discuss
bounds on the masses of Higgs scalars in two-Higgs and multi-Higgs
models. A more detalled discussion of the constralints on masses in these
models as well as supersymmetric models is given in ref, [56].

The simpleat extension of the minimal model is the inclusion of an
additional Higgs doublet. We introduce two complex doublets of Higgs
scalars, ¢, and ¢,, with hypercharges ¥, = Y, = 1. One can assign them
hypercharges Y, = =¥, = 1, but a replacement of ¢, by &, = { 1 t;

{where 15 is the Paull matrix) shows the equivalence of the two cholces
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since l: has the same is0spin but hypercharge opposite to that of ¢..
There are a total of eight Fields, three of which become the
longitudinal components of the W and the Z via the Higgs mechaniam,
leaving five physical scalars: a charged scalar y*, a pseudoscalar Xo
and two neutral scalars ¢ and n. If the most general Yukawa couplings
are allowved, the scalars will mediate flavor changing neutral currents
(FCNC), which are highly suppressed relative to charged current
processes (for instance BR(K® + »*e’e™) = (2.7 & 0.5) x 10~", whereas
BRIK* « 'IOE"UB} = (4,82 + 0.05)8). As was shown by Glashow and Weinberg
(Phys. Rev. D15, 1958 (1977)), the only way to "naturally" suppress FCNC
(l.e. to eliminate them at the tree level for all values of the
parameters of the theory) is to have the guarks of a given charge
coupling only to a single Higgs fleld; then, one can simultaneously
diagonalize the Yukawa and mass matrices (in supersymmetry this
restriction occurs automatically).

One can enforce the Glashow-Weinberg condition by imposing a

dlscrete symmetry
00 =05 :IE . 'd?l (model I) (5.7)
¢ + -t (model II) (5.8)
The phenomenology of model I has been extensively discussed in [57] and
that of model II in [S58]. Either of these symmetries leads to the same

potential and to the same limits on scalar masses to be discussed below.

The most general renormalizable potential consistent with the symmetries
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. above ls \'oht.igﬁ = "TE + 'Jﬂ. where
2 Tt 2 '
and Vy = 3001007 & 25008007 + agele 0le,
Ag
s agleley|r « — ((e]e)* + (8de)®) (5.10)
2 h

As in the minimal model,we take u-f >0, ui >0 to ensure ssb (the |.||' -
u§ = 0 limit will be discussed shortly) and Ay 20, A, >0 to have a
bounded potential. Also, we choose 15 < 0 30 that the vev's of ¢, and
¢, are relatively real (the last term in (5.10) can be written as
'Aiﬁli;izi' - HJ;H;OQ'. A phase rotation ¢, + e“iz. with a
corresponding redefinition of quark phases, can then be used to make 1.5
. real with the chosen sign). Unlike the minimal model, however, we have
two ways to break SU(2) x U(1). 1f Ay 1s negative (positive If Y5 « -
1), then a parallel alignment of ¢, and ¢, is favored and the remaining
symmetry is U(1), o ; if ), i3 positive (negative If Y, = -1), then a
perpendicular alignment is favored and the SU(2) x U(1) symmetry is
completely broken. Thus, we have to restrict iy, to be less than zero
and we can write.
1 o at

8 = <0y> + 0y =— () + { )
x (8 ¢ Log)/v2)

; 1 ] :t
O = (9,0 ¢ 8y =— () + ( ) (5.11)
/2y (ng + 1xg)/v2

. where x* + y* = g = (247 GeV)?. The a's disappear via the Higgs
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mechanism and the masses of the Higgs scalars can be found to be

m; = -151:‘ ; m; - —‘J’i{iq + 1510’ {5.12)
2

The ¢, and n, are not mass elgenstates., The mass matrix is

Eltx: {13".11.‘*.15}1!]‘
{(5.13)
(Ag3+dy+dg)xy 2xoy*
with elgenvalues
é‘m*'; - 11"“‘12]’: iir{lit’—iz}"z}: + II}F¥{13+1H+15}" {5_1“}

As in the minimal model, these are free parameters. However, singe ""'Il <

0 and g < 0

2—=m! (5.15)

In models with N 2 3 doublets, there are N - 1 charged scalars, N = 1
pseudoscalars and N neutral scelars. Although (5.15) is not valid among

scalars of esch multiplet, one can show [56] that

1 1

I“‘;. 2—1 m;z P w2 ——T mﬁ_- (5.16)
i &

2 i LI

Note also that
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This {s a particular case of a very general upper bound [59] on the
mass of the lightest nonsinglet neutral scalar in the GWS model with
arbitrary Higgs sector ((5.17) becomes an upper bound if one requires
that no self-coupling be divergent between M and Hx' See discussion
below).

An intereating speclal case of the model is 15 = 0 (this is stable
under radiative corrections), in which case (5.7) or (5.8) becomes a
continuous symmetry ¢, + elaiz; such a symmetry is an example of a
Peccei-Quinn um,,q symmetry, which was first postulated in [11] as an
explanation of the absence of CP viclation in QCD. If such a symmetry is
present, its spontaneous breakdown by “'2) leaves a pseudo-Coldstone
boson, namely Xor called the axion. Although it is massless at the
treelevel {nx'- - -15:\!' = 0), x, Bets a small mass due to non-
perturbative instanton effects [10].

In order to discuss the lower bounds on the Higgs masses, it is
necessary to discuss radlative corrections to the effective potentlal
Vo(#y,95), Just as In the minimal model. However, in models with more
than one physlcal Higgs fleld, the question of quantum correcticons are
important only along those directions in field space for which Vy (=
fijkt’l"i"u't in general) is very flat. In the minimal model, quantum
corrections are important If u¥/¢® = )1 << 1 and the potential is then
very flat, In the CW case (u* = 0), one can choose Mp such that A(Mg) =
0 {(in the y* = 0 1imit, 3 = 0 (assuming there is ssb, so that o is held
fixed as y* + 0) and there must be a renormalization mass My such that
HHH} = 0) and V, (in that case Aé*/4) vanishes for all values of s.

,The entire one-locp potential is then E¢" 1n ¢’JH§, which can be
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minimized to give the usual result, V(¢) = B¢*(1ln ¢?/0? - H'}. In the
multi-Higgs case (with u:‘; = 0, where "'z"“i,;‘i‘,j}- one can choose the

renormalization polint such that

Vy(R, A M) -0 (5.18)
1R A1
where fl {s a unit vector in ﬁ-splce.  § 4 ﬂﬂ is a solution to (5.18),
then Vy vanishes along the entire range ¢; = {ﬁﬁht- The entire one-

loop potential along this ray is then B¢" In t’fﬂﬁ. which breaks the

symmetry along this direction. In contrast to the minimal model, only
the particular combination of couplings occurring in (5.1B) needs to be
small for quantum corrections to be important.

In the two-Higgs model, if /I T +dg+dytdg= 1 << 1, then mi/o® <«
1 and the potential is very flat along the é-direction. Ir u|' - ué =0,
then V, vanishes along the ¢ direction if X(Mg) = 0. The entire one-

loop correction is then (neglecting fermions)

Vy(e) = grorgy (2my + my + mp o 6M + 3M;) x

x (1n ¢*/Mj - 25/6) (5.19)

where the masses are the tree-level masses found by shifting the flelds
| |

(¢ *+ ¢-0): M, = Y4ga, M, = Va(g? + g'") '!‘u. ui‘ = -Ya(dy + lsh‘. u;'- -

159’.;:; - E-r‘I‘iz g¢? and m; = 0. Note that V,(¢) is the potential only

along the ¢-direction. One can get rid of My by minimizing V,; this

turns the round bracket into (ln ¢/0® - 4), where o = <¢>.

The masslessness of ¢ at the tree-level (like the masslessness of
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the Higgs at the tree-level in the minimal CW case) is due to scale
invariance - ¢ 1s a pseudo-Goldstone boson associated with the breaking
of scale Invariance. Its mass is calculable at the one-loop level and
it is the curvature of Vy;. along the ¢ direction, at the symmetry

breaking point ¢. Therefore

dv 1
1 - - -
e ot] S S EeRiageIY B0
¢=0

Ae s=ee that in contrast to the minimal model, L is not totally
calculable because of the arbitrariness of the other scalar masses, but
n‘ 2> Bey = 10.4 GeV (since the extra terms in 5.20 are positive). Ina
model with N doublets, H; = {EH; L (Em; * n; ) + I n; Y/8x%g2.

We can now consider the bounds on Higgs masses in the two- and
multi-Higgs models, As reviewed in Section 5.1, there is a lower limit
to my , my 2 mey = 10.4 GeV, In the minimal model. However, In the two-
doublet model we just found that CW ssb (uf = uj = 0) gives only a
single constraint on the mass of one of the neutral scalars (see
equation (5.20) above). Since the lower limits discussed in Sectlion 5.1

were very close to Meye ONE expects that the only lower limit in the

present model will be on the mass of that single scalar. In fact

mi = mi2goroy [6M3 + 3M3 + 23 ¢ By ¢ m3]2 med  (10.8 Gew)® (5.21)

The first inequality is due to the faoct that Il we let u: and uﬁ become

slightly negative (which would lower n‘J a barrier develops between the
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symmetric and asymmetric vacua at T = 0, thus too much entropy would
then be produced in the GWS transition which would wipe out the baryon
to entropy ratio. The second ineguality is due to the lack of stringent
lower limlts to the scalar masses ‘l.' L and II. The question of
whether CW symmetry breaking itself is acceptable was addressed in Ref.
[61]). As was shown there (in the absence of heavy fermions), if the
scalars other than ¢ are sufficiently heavy, quantum tunneling becomes
more efficient and drives the transition earlier than xsb if (roughly;
see [61] for details) ( E ng " * 180 GeV, which significantly
suppresses the entropy production. The results in models with more
doublets are very similar lower limits (see [56] for details).

"Upper limits", as defined in the previous section, are very
similar to the minimal model. If one requires that partial wave
unitarity be reapected by tree graphs in Higgs + Higgs - Higgs + Higgs
scattering at large energies [62] then, for instance, the upper limits
to the charged and pseudoscalar Higgs masses are found to be
‘:32!‘!‘!;!5‘]"; -1,7 TeV. Similar limits apply to the neutral scalars
[62]., More stringent limits arise, however, {f one requires
perturbation theory to be valld at the GUT scale. Just as descrlbed in
the previous section, one can follow the change of the scalar couplings,
as the energy scale increases, using the RGE's (the RGE's for the two-
doublet model can be found In [63]); the task becomes cumbersome because
of the number of couplings. 1If no heavy fermions are present, these
couplings will in general grow, though they will do so at different
rates. Therefore, if we want to believe perturbative caleculations in

+ GUTS (which give excellent predictions for 51n'eu and HBJHTJ. we must
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consistently restrict the low energy values (initial values for the
RGE's) of these couplings, sc that none of them blows up before we reach
the GUT scale. These upper limits to the Ay can then be turned into
upper limits to the masses, which are summarized in Figs. 5.2 and 5.3
(see [56] for details). It turns out that the entire hypersurface
defined by the upper limits to I;. n;. .n; and m: can be enclosed in a
hypersphere, so that one can state that ( i 151’4 < 260 GeV. We
emphasize that these limits are not phencmenclogically required, but if
they are not satisfied, no guantitative GUT prediction i{s reliable. The
upper limits on the scalar masses in the N-doublet model are very
similar to the two doublet case. See [56] for detalls.

Because of the added existence of charged and pseudoscalar boaons
in the two-doublet model, the phenomenoclogy is much richer. The
phenomenoclogy of charged Higgs bosons has been dlscussed extensively
[57,64]. x* can be produced in e'e” annihilation, but only with -4
unit of R and without a sharp threshold; it is not clear that they could
be unambiguously seen. Unfortunately the Z will not be a good place to
look for charged Higgs particles; the coupling of the Z to charged
scalars is small: while the hadronic cross section increases by about
10 at the Z (relative to e'e” point cross section), pair production of
charged Higgs particles increases by < 10 [65)., It i{s now known that x*
must be heavier than the b quark [66)], or elae the b would decay
semiweakly through its Higgs coupling (b + x U, for example). The K, -
KS mass difference alsoc gives constraints, as noted by Abbott, Sikivie
and Wise [67]). It was noted there that x* will mediate flavor changing

‘ neutral currents at cone-loop; Il cne requires that the x* contribution



5l

to X° - R° mixing be lesa than the W contribution (which agrees fairly

well with the data), then one finds (in either model 1 or II)

CALIESE- WYL T (5.22)

(the actual bound ls slightly stronger). The bound can be much stricter
in the six-quark model, but it depends on uninown mixing angles (see the
discussion in [56]). They [67] also considered limits due to one-loop
charged Higgs contribution to K + 2w; here the W contribution dominatea
the y* contribution for m, 2 25 GeV. These limits are primarily of use
if y/x >1; 1f x/y > 1, then the only bound comes from the Dy, - Dg mass
difference and, using current limits, it {s found that mI{nuv}:;1.5:
lu"tx!y}‘. Also, contributions to l'“zlu were considered by Toussaint
[68] and can be large if x >> y.

A major difference between the minimal model and the two Higgs
model 18 the strength of the Yukawa couplings of the neutral scalars.
In the minimal model, neglecting Kobayaahi-Maskawa mixing, the Yukawa
coupling is mr!m In model I of the two-doublet model, $o couples to
charge */,; quarks with strength me/x and n, couples to charge =i/
guarks and leptons with strength nffjr {‘n and n, can then be rotated to
find the physical eigenstates; the couplings are listed in [56]). 1In
model II, ¢, couples to all fermions with strength my/x. Thus, since
x/0 €1 and y/o <1, the branching ratiofor V+H + ¥, for example, can
be significantly increased in the two-Higgs model; one can distinguish
between model I and I1 by looking at the Higgs decay product. Current

 1limits are not very restrictive; if, for example, my { 3 GeV, the
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failure to observe a monochromatic photon in charmed decays only tells
us that, neglecting mixing, x/y € 10 [58]). 1t has been noted in ref.
[69] that the Z might be an excellent place to look for neutral (scalar
and pseudoscalar) non-standard Higgses (if they are light enocugh) since
their production considerably exceeds that of charged Higgses near the
Z=pole.

The effects of a pseudoscalar on FCNC were discussed in [70]. For

instance the transition s + dy, leads to Kt :'xﬂ. which (if m 1

I}

MeV) leads to K' + z%ee”™, if m_, ¢ 400 MeV. In this range,

X
conasistency with the current limits require (y/x) < 0.01, a very
restrictive constraint. The b + sy, transition is very sensitive to the
top quark mass. If, for example, m; = 50 GeV, m, - M, and x - y, then
the branching ratio {s~5% in both models. A pseudoscalar lighter than
the = may be observable In T + x,¥ (although if y/z >> 1, thismay be
small even if b + Xo® 1s fairly large; see [7T0] for details).

The phenomenoclogy of Higgs bosons 18 thus much richer in the twe
higgs model. The limits are not very restrictive today, but will

certainly be improved (or Higgs effects will be found) by more results

on b decays. The results for the N-doublet model are very slimilar.
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CHAPTER VI

BOUNDS ON FERMION MASSES
6.1 Upper Bounds

As was mentioned earlier, fermion masses are arbitrary in the GWS
model. There are, of course, experimental lower limits on the mass of a
heavy (charged) fermion from e'e” annihilation experiments, mg 2 21 GeV
[11]. There are some phenomenclogical upper limits to fermion masses
based on the p parameter [72] (see Section 5.2) or on the K; - Kg mass
difference [73], but they are either very weak or very sensitive to
unknown matrix elements. We now consider theoretical upper limits to
fermicn masses assuming, for the moment, that the top quark is the only
undiscovered heavy lermion. We will discuss the generallzation of the
results at the end.

It was noted in refs. [T4=76] that there is a theoretical upper
bound to the top quark mass, m, obtained by considering one-loop
corrections to the Higgs potential. The one-loop potential was
discussed In Section 3.1; writing It in terms of its minimum o and the

Higgs mass mj = d*V/d¢*(¢ = o) (we choose units such that ¢ = 1)

V= mil25¢%Ine? = (32 - 1)e% ¢ (42 - 2)¢*] (6.1)

where 207¢ = ¢? and = w UB/mi = (6M5 « 3M37 + M3 - 12m})/16n’mi. Here
Hﬁ;' = =u? + 3)¢%. The potential is plotted for various values of = {n

Fig. 6.1. It is easy to see that if m, is sufficiently large, then E ¢
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0 and the potential is unbounded.

In ref. [74] it was argued that the minimum at ¢ must be an
absolute minimum, thus = must be positive. This leads to an upper limit
onm, given by the = = 0 1ine of Fig. 6.2. However, for large values of
¢ the potential becomes negative at ¢ = ¢y = exp(=1/742); in ref [75] it
was noted that if this value is outside the region of validity of
perturbation theory, then one cannot say the potential is unbounded. It
can be shown [78] that perturbation theory {s valid up to the Planck
scale; ¢ 2 My corresponds to = > - 0.006. Inref.[76], 1t was pointed
out that the SU(2) x U{1) potential {s validonly up to the unification
scale; ¢, 2 10** GeV gives T > - 0.008. As can be seen {n Flg. 6.2, all
of these limits give similar upper bounds to m,, m, { 100 GeV.

In ref. [77] it was noted that there are two effects which
significantly weaken these upper bounds. First, as discussed in Chapter
IV, the one-loop potential requires |1n¢®| << 1 for it to be valid, The
RGE-improved potential can then be used to extend the region of valldlty
of the one-loop potential as long as the running couplings remaln small.
The main effect of using the RCE-improved potential can be taken into
account by using running couplings in the cne-loop potential, this is
the leading two-loop effect [78). Thus, for large values of ¢, the
scale dependence of the couplings becomes cruclal. The B function for

the Yukawa coupling g, is (neglecting mixing).

By = (9g{/2 - 32wa g, - Iva, B, = 17wa'g,/3)/16x" (6.2)

If gy (o) 13 small enough (m; < 250 CeV), then g, decreases with scale,
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and this has the effect of reversing the signof = at large scales, If
2 changes sign before the potential turns over, then our vacuum 1s
absolutely stable. Thus, there is a larger range of masses for which
our vacuum is absolutely stable. The lower solid curve in Fig. 6.3
gives the upper limit to the region of absolute stabllity; one can see
that the bounds are already much weaker than those of refs. [T4-76].

Second, there is no phencmenclogical requirement that we live in an
absolute vacuum. A given potential is acceptable if a) during, say, the
GUT phase transition, the universe goes into the correct SU(3) x SU(2) x
U(1) vacuum, b) it stays there until the elesctroweak transition, c)
during the electroweak transition, the universe goes into the 5U(3) x
U(1) vacuum, and d) it stays there for at least 10'°® years. As was
shown {nref. [T7), this last constraint gives the strongest bound on
W .

If m¢ !s above the upper bound of absolute stability, then the
potential does turn over and becomes negative before = changes sign.
However, at large enough ¢, = changes sign and the potential turns
around and becomes positive. Qur vacuum is thus metastable with a
barrier separating it from the atable vacuum. We have Lo require then,
that the lifetime of our universe be greater than 10'° years. As
discussed in Section 3.3, the nucleation rate of stable phase per unit
volume, f, 15 - exp (-B), where B {5 the action of the bubble solution.
The fraction of space filled with new phase at time t is approximately 1
- exp{-ft*). Since, in our units, the age of the universe ise'®', the
fraction of space filled with stable phase today is 1 - exp(-exp(loy -

‘B)). FRequiring this fraction to be negligible is the same as requiring
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that B2 oh; this, in burn; becomes an upper limit to LI It turns out
that B itselfl 1s extremely sensitive to the top quark mass, thus the
uncertaintiea associated with the preclse expansion rate, bubble
overlap, the prefactor in the nucleation rate, etec ..., are utterly
negligible {n determining the upper bound, The result is plotted in
Fig. 6.3 - the upper solid line corresponds to the B = U0N 1line and 1s
an upper bound on m,.

Although the limit on m, for which our vacuum is absolutely stable
is sensitive to uncalculated two-loop effects, the upper bound to m, due
to the lifetime of the universe is very insensitive toc two-loop effects;
dropping the running of couplings entirely changes the limit by ¢ 5%.
Thus me < 200 GeV, a much weaker limit. If there are additional quarks,
one replaces Il{ by I ma: the limits on fourth generation masses are then
more severe, 1f there are additional Higgs scalars (see Section 5.2),
the abscissa in Fig. 6.3 refers to one of the neutral scalars and the

1
ordinate is replaced by I.'n‘,; - (112t m;] "‘.

6.2 The CW Tranaition

As discussed at the end of Section 3.1, the mass of the Higgs
scalar is calculable in the CW model, mﬁ = 8Bo?. Since B muat be
positive, CW symmetry breaking is ruled out if the mass of a colored
fermion g 2 B4 Gev (I n& 2 (B4 GeV)"* + (1/12)L mg If there are many
scalars and colored fermions)., For smaller masses, Witten noted [41)]
that xab drives the transition in the CW model. While the universe ls
trapped in the symmetric phase, quarks are massless and the strong

‘interactions have a SU(Ng) x SU(Ng) chiral symmetry. As the temperature
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drops. this chiral symmetry is broken In a presumably first order phase
transition at Tn - 200 MeV and ¢ gets a vev. As soon as this happens,

the Yukawa couplings of the Higgs scalar to the quarks

Ly -] By il*i‘ (6.3)

add an extra linear term to the effective potential and V(¢) = Vi, (¢) -
b¢, where b = (Igy < ¥,;4,>)/V2 and V., is the CW potential (see Sectlon
5.1). This immediately destabilizes the symmetric vacuum and although a
nearly symmetric metastable vacuum can exist for awhile, the barrier
separating it from the true vacuum will disappear at T not much less
than T, and, therefore, Ty = T, = 200 MeV. Thus 5,/85; -10%"*, which is
acceptable but requires very efficient baryogenesis in the early
universe.

It was noted later [44] that since for a given quark q, the Yukawa
coupling satisfies the RGE of equation (6.2), for L < 250 GeV Bq is
asymptotically free and thus increases as the scale decreases. For a
sufficiently heavy quark, this causes quark loops to dominate at small
scalea and since they tend to stabllize the symmetric vacuum (because B
in (3.8) becomes negative at small scales), but cannot prevent its decay
as soon as <yy> 4 0), one finds that a nearly symmetric metastable
vacuum forms (<¢> = O0(1) GeV) with a barrier that separates {t from the
true vacuum (<¢> =~ 28T GeV) even at T = 0. Thus, one has to worry about
the entropy produced in the transition to the true vacuum. To analyse
this effect more carefully we use the RGE for the effective potential

(see Chapter IV).
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The full effective potential satisfies the RGE of equation (4.1).

At T =0 (or T X< Tu!. chiral symmetry is broken and <y¢> glves an

effective linear term in V(¢). The most general solution to (4.2) is

then [4&]

Vi) = -higg(t))<hpder,(t) « flgg(t)le'rylt)

where t = 1n(¢/Mg) and Mg 1s a renormalization mass.

(6.4)

f and h are

arbitrary functions and the effective couplings gltt} are the solutions

of the RCE's

dg By(8y)
dt 1‘7{51}

The I'n are defined as

t Y(gg(t"))
Tp(t) = expl n J ' ——
o 1-¥(gy(t'))

Choosing the normalization condition for A and Bq a8

VM) = = 2 B <PWOMg ¢ AN

equation (6.4) becomes

1
Vie) = - E-gqm(ivnr.’u} + -’l-mh‘ru{tl

(6.5)

(6.6)

(6.7)

(6.8)
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This =oclution to the RGE is an exact result. The loop expansion occurs
when we use expressions for 51{51} and *r[gi}. The relevant g;'s are gg,
g and g', whose f functiona are well known, lq' whose B function is that

of equation (6.2), and A, whose one-loop B function is given by

By = 3A%/25 + 12(ag - T (3a, + ') + 88 (6.9)

vhere a, = g{/4v and B is the expression of (3.8) (B = 3(2a] + (a, *

a)? - 1ﬁna}fﬁh' ). The anomalous dimension is [44]
Y = ~(3g%/4 + g'%/4 » 3551::5:' (6.10)

The result for V(¢), for several values of m., 15 plotted in Fig. 6.4.
We see that for a quark of mass greater than 65 CeV, there (s a barrier
between the two vacua and, as a result, the universe will fall intoa
nearly symmetric metastable phase when ysb takes place (the Higgs fleld
will not "roll over™ the hill since the barrier is larger at T = Tu}.
To show that the existence of thls barrier iIs Indeed fatal, {t is
necessary to calculate the nucleation rate (see Section 3.3) f - ua
exp(-B(T)), where 0 = 0{1) GeV and B(T) is the Eucli{dean action of the
least action solution. As discussed in Section 3.3, BI(T) reaches a
minimum, if a barrier exists at zero temperature, at T = T* and ir B(T®)
>Inb - lnhaupfu'J = 150, then far too much entropy is generated. One
finds that this is the case if m 2 65 GeV, ruling out CW symmetry

breaking in that case (for a discussion of the sensitivity of the limit

to the wvarious input parameters, definitions of couplings, Eauge
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dependence of Y, etc ..., see [44]).

Additional fermions make the limit more severe. Including a fourth
generation one finds that there i{s a metastable vacuum if (I wa}'{ 2 54
GeV. Thus, there {5 a very small window in which one could put the
masses of additional quarks. If there are additional scalars one linds
that for a wide range of parameters the barrler will exist If I maz (65
Cev)® « (65/88)° (1/12) L =3, which is somewhat stronger than the limit
required by the positivity of B.

Although it might seem that the barrler vanishes for mq{ 65 GeV, a
breakdown of perturbation theory precludes any definitive statement
about this range of masses. It might be the case that the barrier still
exists in this range of masses; using the fact that eq. (6.8) is an
exact result, one can assume different types of behavior for Bq and thus
study the potential in the region where the strong interaction are non
perturbative (if ma 2 65 GeV then Eq stops running at ¢ - <¢> = 0(1) GeVy
since the quark has a mass - 1 GeV in the nearly symmetric vacuum.
Thus, the potential can be continued all the way to the origin); many
types of behavior do give a metastable vacuum, but some do not (see [4i]
for detalls). If such a vacuum existed for m_ ¢ 65 GeV also, CW ssb
would be ruled out entirely in the minimal model; however, the breakdown
of perturbation theory does not allow us to make any definitive

statement for me £ 65 GeV.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The electroweak Lheory of Glashow, Salam and Weinberg is based on
the principle of local gauge invariance (i.e. invariance under local
phase transformations of the matter fields) as the fundamental link of a
unified understanding of the weak and electromagnetic interactions. The
gauge Invariance implies the existence of vector boaons in a number
equal to the number of generators of the group of gauge symmetries
which, for the GWS model, i3 four: the photon and the massive vector
besons W* and Z. Thus, with the recent detection of the W and the Z,
the lonesome photon i3 now listed as a partner of the W and the I under
the new entry of gauge bosons in the latest Review of Partlicle
Properties [79]. If the full gauge symmetry of the Lagrangian were an
exact symmetry of the vacuum, then the W and the Z should be massless,
Just like the photen; the symmetry must, therefore, be broken. In the
GWS model, a set of Higgs scalars is Introduced which acquire vev's,
breaking the symmetry to the observed U(1) symmetry of electromagnetism.
Masses are then generated for the W and the Z in a gauge invariant
fashion. Fermion mass terms are not allowed in the Lagrangian by the
SU(2) x U(1) gauge symmetry; instead, quark and leptons get their masses
via their Yukawa couplings to the Higgs acalars. The gauge aector of
the theory is both experimentally well explored and thecretically very
constrained. The structure of the self-couplings and couplings to

matter of the W and the I are completely determined by the gauge
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structure of the theory. Several experiments give similar values of

aing thus from siné, and the electron's charge one can determine g and

W
g'- The scale of symmetry breakdown, o, is fixed by the muon lifetime,
thus M = go/2 and M, = /g7 + g'® 0/2 are predicted to be M, = 83.0 +
2.4 GeV and M, = 93.8 + 2.0 GeV, in good agreement with the experimental
values M_ = B1 = 2 GeV and M, = 93 ¢+ 2 GeV. The structure of the
coupling of the W to fermions is In good agreement with charged current
weak interactions and the SLC will be able to explore in detall the
couplings of the Z to fermiona. In contrast to this, the mechanism of
ssb is a poorly understood aspect of the model. The masses of both
fermions and Higgs scalars are completely arbitrary in the model, thus
the masses of the known leptons and quarks have to be set to their
experimentally known values, Whether the Higgs mechanism is the
mechanism of symmetry breakdown has yet to he teated experimentally,
thus finding a Higgs acalar or ruling it out is very crucial. For these
reasons, Higgs physics will undoubtedly be very important in the near
future, thus it is important to have limits on these arbltrary masses in
order to test the sab of the model.

In this thesis we have discussed in detall the constraints on the
masses of Higgs bosons and fermions In the GWS model. In order to make
the discussion self-contained, we {ncluded Sections II-IV. In Section
I1 we briefly described gauge theories and then discussed how, if
wanted, the gauge symmetry can be spontaneously broken via the Higgs
mechanism, 8o that masses can be generated for the gauge bosons without
breaking gauge Ilnvariance. We then described the specific structure of

the GWS model of the electroweak [nteractions, We then discussed the
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arbitrariness of the SM and how GUTS eliminate some of the arbltrariness
and their impact upon cosmology. Finally, in Section 1II-1V we
introduced the effective potential and described how it ls used to study
symmetry breaking phase transitions in the early universe. Sections V¥
and VI contain the detalls of how the various constraints arise. We
concluded that, in the minimal model, there {5 a lower limit to the
Higgs mass of roughly mey = 10.4 GeV, and that my = mey 18 allowed only
for a limited range of quark masses. Also an upper bound of roughly 200
GeV exists on the mass of a heavy quark (or *Y3 x 200 GeV for a heavy
lepton). There are no experimental constraints on the Higgs mass as yet
and, from e'e” annihilation experiments, the current lower limit to the
mass of a heavy fermion i3 21 GeV. Upper limits to the Higgs mass
exist, based on the assumption that perturbation theory ls valld at
varlous scales. For two-body reactions of gauge bosons to respect
partial wave unitarity, my < ' TeV. However, lor perturbation theory to
be valid all the way up to the GUT scale M,, my < 175 GeV; otherwise all
GUTS' predicticns are not reliable. In multi-Higgs models, there is a
lower bound on the mass of only one of the scalars (any of the neutral
scalars), which is at least m,, if no heavy fermions are present, but it
can be higher or lower depending on the masses of the other scalars and
the other fermions (see 5.2). The upper bounds on the various Higgs
scalars' masses are very similar to those of the minimal model. There
are experimental constraints on the masses of some of the scalars; for

example, the mass of charged scalarm_> m, or else the b-quark could

X
decay semiweakly as b + y L. The phenomenology is much richer than in

the minimal model, but there are many more parameters,



FOOTNOTES

F1 Absorbing logarithms of couplings in the definition of ip.

FZ Note that the scalar loop contribution is (34¢® = u?)"* 1n(31¢? -
u*)/Mg and, therefore, has an imaginary part for 3i¢? < .
However, 3A¢? = p* > 2Bo* > 0 and, thus, V(¢) is real at its

minimum.

F3 A heuristic argument for this is the following. The thermal average

at time t 18

Tr(e BH)co,> - ce™1t g o1tH,
= Trie BHg 1t o ItH) | qn(itH BH 1t o)

Thus €0¢> = <0> at t - -i8.

Fa We drop the k/R? term since RT = constant and, therefore, this term
is 0(T*), but at high temperatures p(T) - T" and at low
temperatures p is dominated by the vacuum energy.

F5 A satronger upper bound can be obtained If one assumes that the
theory will become trivial unless y(t) = A(t)/(g'(t))?* is driven to

an ultraviolet stable fixed point. See ref. [4B8].
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FIGURE CAPTIONS

Fig. 2.1 Evolution of couplings (alpha) as functions of Q = v-q%, where
q? is a typical momentum transfer squared. The curve labeled strong
(weak, electromagnetic) corresponds to the evolution of ag = B/l (ay =
g* /4w, oy = (5/3) g'*/4x); where g, (g,8') is the gauge coupling of the
group SU(3) (Su(2), U(1)) of the SM (see Section 2.3). The factor 5/3
in the definition of a, is included so that V7 ¥ is the appropriately

normalized generator of the U(i) subgroup of Gy = SU(S5).

Fig. 2.2 Typlcal diagrams that contribute to proton decay due to
exchange of superheavy gauge bosons X and Y. The gquark-antiguark pair

ecan then form neutral mesons such as =°, p®,6,n, ete..

Fig. 3.1 The loop expanaion for the effective potential. The lirst row
is the tree-level approximation, the second 1s the one-loop

approximation, etc...

Fig. 3.2 The effective potential, as a functionof ¢, in the minimal
model. The potential {s graphed for various values of u? < 0 and the
corresponding value of the mass of the Higgs scalar, mg I's given in each

case.

Fig. 3.3 The temperature-dependent effective potential, as & function

of ¢, for various temperatures. As the temperature falls, an asymmetric
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vacuum starts to develop (at T = Tu )i it becomes degenerate with the
2

symmetric vacuum at T = T,. AL T = Tﬂl . the latter vanishes,

Fig. 5.1 Entropy production in the minimal model as a function of
Ilsfltc-... where mg is the mass of the Higgs scalar. The dashed line is
the entropy produced If tunneling alone drives the transition. The full

line takes chiral symmetry breaking Ilnto account.

Fig. 5.2 "Upper limits" of Higgs masses plotted in the h*.:nl plane
for various values of my, = B The straight line represents the my b
m, /¥YZ limit.

X

o
Fig. 5.3 "Upper limits" of Higgs masses plotted in the (¢,n) plane for
various values cof m, {nxo is assumed to be amall). The straight line
here merely represents the fact that one scalar is heavier than the

other. The error in the masses is about 0.020%, thus the convergence of

the three lines is not real,

Fig. 6.1 The one-loop effective potential V (in units in whicho = 1)

for various values of = (see Section 6.1). Here V = nﬁ V8.

Fig. 6.2 The value of £ for given values of my and m, (see Section

6.1).

Fig. 6.3 Upper bound on m,. The lower (upper) dashed curve is the

previous limit of ref. [T4] ([75])). Below the lower full curve, the
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present vacuum is absoclutely stable (region A). In region B our vacuum
is unstable, but with a lifetime t > 10'°® yr. In region C, t < 10'° yr;

thus reglon C is disallowed.

Fig. 6.4 The zerc-temperature effective potential V, as a function of

¢, for different values of the top quark mass m,. m, is given in GeV's,
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